Presents

TestZone

4
∇

India's least priced Test Series platform

12 Month Plan

2017-18 All Test Series
@ Just

₹ 399/-
 300+ Full Length Tests

\boxtimes Brilliant Test Analysis
\boxtimes Excellent Content
\boxtimes Unmatched Explanations

JOIN NOW

Trigonometry Questions for SSC CGL Tier 1 \& 2 and 10+2 Exams

TRIGONOMETRY QUIZ 3

Direction: Study the following questions carefully and choose the right answer:
(1). If Θ is an acute angle and $\tan ^{2} \Theta+\frac{1}{\tan ^{2} \Theta}=2$, then the value of Θ is:
A. 60°
B. 15°
C. 45°
D. 30°
(2). If $\alpha+\beta=90^{\circ}$, then the value of $\left(1-\sin ^{2} \alpha\right)\left(1-\cos ^{2} \alpha\right) \times(1+$ $\left.\cot ^{2} \beta\right)\left(1+\tan ^{2} \beta\right)$ is
A. 1
B. -1
C. 0
D. 2
(3). If α and β are complementary angles, then what is $\cos \alpha$ $\operatorname{cosec} \beta-\cos \alpha \sin \beta$ equal to?
A. $\sec \beta$
B. $\cos \alpha$
C. $\sin \alpha$
D. $-\tan \beta$
(4). The value of $\cos 25^{\circ}-\sin 25^{\circ}$ is
A. positive but less than 1
B. positive but greater than 1
C. negative
D. 0
(5). If $\sin (A+B)=1$, where $0<B<45^{\circ}$, then what is $\cos (A-B)$ equal to?
A. $\sin 2 B$
B. $\sin B$
C. $\cos 2 \mathrm{~B}$
D. $\cos B$
(6). If α and β are complementary angles, then what is $\sqrt{\operatorname{cosec} \alpha \cdot \operatorname{cosec} \beta}\left(\frac{\sin \alpha}{\sin \beta}+\frac{\cos \alpha}{\cos \beta}\right)^{-\frac{1}{2}}$ equal to?
A. 2
B. 3
C. 1
D. 0
(7). What is the value of $\frac{\sin \Theta}{1+\cos \Theta}+\frac{1+\cos \Theta}{\sin \Theta}$?
A. $\sec \Theta$
B. $2 \operatorname{cosec} \Theta$
C. $2 \sin \Theta$
D. $\cos \theta$
(8). What is $\sin 25^{\circ} \sin 35^{\circ} \sec 65^{\circ} \sec 55^{\circ}$ equal to?
A. -1
B. 0
C. $\frac{1}{2}$
D. 1
(9). If $\sec \Theta=\frac{13}{5}$, then what is the value of $\frac{2 \sin \Theta-3 \cos \Theta}{4 \sin \Theta-9 \cos \Theta}$?
A. 1
B. 2
C. 3
D. 4
(10). If $\sin \Theta=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ then which one of the following is correct?
A. $\cos \Theta=\frac{2 x y}{x^{2}-y^{2}}$
B. $\cos \Theta=\frac{2 x y}{x^{2}+y^{2}}$
C. $\cos \Theta=\frac{x-y}{x^{2}+y^{2}}$
D. $\cos \Theta=\frac{x y(x-y)}{x^{2}+y^{2}}$

Correct Answers:

1	2	3	4	5	6	7	8	9	10
C	A	C	A	A	C	B	D	C	B

Explanations:

1.

$\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=2$
$\tan ^{4} \theta+1=2 \tan ^{2} \theta$
$\tan ^{4} \theta+1-2 \tan ^{2} \theta=0$
$\left(\tan ^{2} \theta\right)^{2}+(1)^{2}-2\left(\tan ^{2} \theta\right)(1)=0$
$\left[\therefore a^{2}+b^{2}-2 a b=(a+b)^{2}\right]$
$\left(\tan ^{2} \theta-1\right)^{2}=0 \Rightarrow \tan ^{2} \theta=1$
$\tan \theta=1=1 \Rightarrow \tan \theta=\tan 45^{\circ} \Rightarrow \therefore \theta=45^{\circ}$.
Hence, option C is correct.
2.

As per the question, $\alpha+\beta=90^{\circ}, \therefore \alpha=90^{\circ}-\beta$.
$\left(1-\sin ^{2} \alpha\right)\left(1-\cos ^{2} \alpha\right) \times\left(1+\cot ^{2} \beta\right)\left(1+\tan ^{2} \beta\right)$
$\left[\because 1+\tan ^{2} \beta=\sec ^{2} \beta\right.$ and $\left.1+\cot ^{2} \beta=\operatorname{coesce}^{2} \beta\right]$
$\Rightarrow\left(1-\cos ^{2} \beta\right)\left(1-\sin ^{2} \beta\right) \times \operatorname{cosec}^{2} \beta \times \sec ^{2} \beta$
$\left[\because \sin ^{2} \alpha=\sin ^{2}(90-\beta)=\cos ^{2} \beta\right.$ and $\left.\cos ^{2} \alpha=\cos ^{2}(90-\beta)=\sin ^{2} \beta\right]$
$\therefore \sin ^{2} \beta \cdot \cos ^{2} \beta \times \frac{1}{\cos ^{2} \beta} \times \frac{1}{\sin ^{2} \beta}=1$
$\left[\because\left(1-\cos ^{2} \beta\right)=\sin ^{2} \beta\right.$ and $\left.\left(1-\sin ^{2} \beta\right)=\cos ^{2} \beta\right]$

Hence, option A is correct.
3.
$\alpha \& \beta$ complementary angle.
$\alpha=90-\beta \& \beta=90-\alpha$
$\cos \alpha \cdot \operatorname{cosec} \beta-\cos \alpha \cdot \sin \beta$
$=\sqrt{\cos \alpha \cdot \operatorname{cosec}(90-\alpha)-\cos \alpha \cdot \sin (90-\alpha)}$
$[\because \operatorname{cosec}(90-\alpha)=\sec \alpha$ and $\sin (90-\alpha)=\cos \alpha]$
$=\sqrt{\cos \alpha \cdot \sec \alpha-\cos \alpha \cdot \cos \alpha}$
$\left[\because \cos \alpha \cdot \sec \alpha=\frac{\cos \alpha \times 1}{\cos \alpha}=1-\cos 2 \alpha\right.$
$=\sqrt{\sin ^{2} \alpha}=\sin \alpha$.
Hence, option C is correct.
4.

Since, value of $\cos \Theta$ decreases, from 0° to 90° and at 45° it is equal to the value of $\sin \Theta$.

Similarly, value of $\sin \Theta$ increases from 0° to 90° and at 45° it is equal to the value of $\cos \Theta$.

For $0^{\circ}<\Theta<45^{\circ}, \cos \Theta>\sin \Theta$
So, value of $\cos 25^{\circ}-\sin 25^{\circ}$ is always positive but less than 1.
Hence, option A is correct.
5.
$\because \sin (A+B)=1$
$\Rightarrow A+B=\sin ^{-1} 1 \Rightarrow(A+B)=90^{\circ} \Rightarrow B=90^{\circ}-A \Rightarrow A=90^{\circ}-B$

Now, $\cos (A-B)=\cos A \cos B+\sin A+\sin B$
$=\cos (90-B) \cos B+\sin (90-B) \sin B$
$=\sin B \cos B+\cos B \sin B$
$=2 \sin B \cos B=\sin 2 B$.
Hence, option A is correct.
6.
α and β are complementary angles so $\beta=\left(90^{\circ}-\alpha\right)$
Let $f(x)=\sqrt{\operatorname{cosec} \alpha \cdot \operatorname{cosec} \beta}\left(\frac{\sin \alpha}{\sin \beta}+\frac{\cos \alpha}{\cos \beta}\right)^{-\frac{1}{2}} \sec \left(90^{\circ}-\alpha\right) \times$
$=\sqrt{\operatorname{cosec} \alpha \cdot \operatorname{cosec}\left(90^{\circ}-\alpha\right)} \times\left(\frac{\sin \alpha}{\sin \left(90^{\circ}-\alpha\right)}+\frac{\cos \alpha}{\cos \left(90^{\circ}-\alpha\right)}\right)^{-\frac{1}{2}}$
$=(\operatorname{cosec} \alpha \cdot \sec \alpha)^{\frac{1}{2}}\left(\frac{\sin \alpha}{\cos \alpha}+\frac{\cos \alpha}{\sin \alpha}\right)^{-\frac{1}{2}}$
$=(\operatorname{cosec} \alpha \cdot \sec \alpha)^{\frac{1}{2}}\left(\frac{\sin \alpha+\cos \alpha}{\cos \alpha \sin \alpha}\right)^{-\frac{1}{2}}$
$=(\operatorname{cosec} \alpha \cdot \sec \alpha)^{\frac{1}{2}}\left(\frac{1}{\cos \alpha \sin \alpha}\right)^{-\frac{1}{2}}$
$=(\operatorname{cosec} \alpha \cdot \sec \alpha)^{\frac{1}{2}}(\operatorname{cosec} \alpha \cdot \sec \alpha)^{\frac{1}{2}}$ s
$=(\operatorname{cosec} \alpha \cdot \sec \alpha)^{0}=1$.
Hence, option C is correct.
7.

Let $\mathrm{f}(\mathrm{x})=\frac{\sin \Theta}{1+\cos \Theta}+\frac{1+\cos \Theta}{\sin \Theta}$

$$
\begin{aligned}
& =\frac{\sin ^{2} \Theta+(1+\cos \Theta)^{2}}{\sin \Theta(1+\cos \Theta)} \\
& =\frac{\sin ^{2} \Theta+1+\cos ^{2} \Theta+2 \cos \Theta}{\sin \Theta(1+\cos \Theta)} \\
& =\frac{2+2 \cos \theta}{\sin \theta(1+\cos \theta)} \\
& =\frac{2\left(\therefore \sin ^{2} \theta+\cos ^{2} \theta=1\right]}{\sin \theta(1+\cos \theta)} \\
& =\frac{2}{\sin \theta}=2 \operatorname{cosec} \theta
\end{aligned}
$$

Hence, option B is correct.
8.
$\sin 25^{\circ} \sin 35^{\circ} \sec 65^{\circ} \sec 55^{\circ}$
$=\sin 25^{\circ} \cdot \sin 35^{\circ} \cdot \frac{1}{\cos 65}^{\circ} \cdot \frac{1}{\cos 55}{ }^{\circ}$
$[\therefore \cos (90-\theta)=\sin \theta]$
$=1$
9.

Given, $\sec \theta=\frac{13}{5}$
We know that, $1+\tan ^{2} \theta=\sec ^{2} \theta$
$\tan ^{2} \theta=\left(\frac{13}{5}\right)^{2}-1$
$\tan ^{2} \theta=\sqrt{\frac{169}{25}-1}=\sqrt{\frac{144}{25}}=\frac{12}{5}$
$\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}=\frac{2 \times \frac{\sin \theta}{\cos \theta}-3}{4 \times \frac{\sin \theta}{\cos \theta}-9}$
[\therefore Dividing by $\cos \theta$ numerator \& denominator]
$=\frac{2 \times \frac{12}{5}-3}{4 \times \frac{12}{5}-9}$
$\left[\therefore \frac{\sin \theta}{\cos \theta}=\tan \theta=\frac{12}{5}\right]$
$=\frac{24-15}{48-45}=\frac{9}{3}=3$.
Hence, option C is correct.
10.
$\sin \theta=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
We know that,

$$
\begin{aligned}
& \cos ^{2} \theta=1-\sin ^{2} \theta \\
& \cos ^{2} \theta=1-\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2} \\
& =\frac{\left(x^{2}+y^{2}\right)^{2}-\left(x^{2}-y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{4}+y^{4}+2 x^{2} y^{2}-x^{4}-y^{4}+2 x^{2} y^{2}}{x^{2}+y^{2}}
\end{aligned}
$$

$=\cos ^{2} \theta=\frac{4 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)}=\left(\frac{2 x y}{x^{2}+y^{2}}\right)^{2}$
$=\cos \theta=\frac{2 x y}{x^{2}+y^{2}}$
Hence, option B is correct.

$-{ }^{1}=\mathbf{T}$ The uavestion Bank

प्रस्तुत करते हैं
TestZone
भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series
@ Just
₹ 399/-
300 + फुल लेन्थ टेस्ट
\square श्रेष्ठ विश्लेषण
उत्क्षष्ट विषय सामग्री
\square बेजोड़ व्याख्या
अभी जुड़ें

