

Trigonometry Questions for SSC 10 + 2 and CGL Tier-I

Trigonometry Quiz 5

Directions: Read the following questions carefully and choose the right answer.

1. Find the value of $\sin ^{2} 10+\sin ^{2} 20+\sin ^{2} 30+\ldots \ldots+\sin ^{2} 80$.
A. 2
B. 3
C. 1
D. 4
2. Find the value of $\frac{16}{\sqrt{3}}\left(\operatorname{Cos} 50^{\circ} \operatorname{Cos} 10^{\circ} \operatorname{Cos} 110^{\circ} \operatorname{Cos} 60^{\circ}\right)$
A. 1
B. 2
C. -1
D. -2
3. $\cos ^{2} \theta\left(\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}\right)$
A. $\cos \theta$
B. $\frac{\cos \theta}{2}$
C. $2 \cos \theta$
D. $\sqrt{2} \cos \theta$
4. If $\sin 21^{\circ}=\frac{x}{y}$, then $\sec 21^{\circ}-\sin 69^{\circ}$ is equal to
A. $\frac{x^{2}}{y \sqrt{y^{2}-x^{2}}}$
A. $\frac{x^{2}}{y \sqrt{y^{2}-x^{2}}}$
B. $\frac{x^{2}}{y \sqrt{y^{2}-x^{2}}}$
C. $\frac{y}{x \sqrt{x^{2}-y^{2}}}$
5. $\left(\frac{\sin 35^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\cos 55^{\circ}}{\sin 35^{\circ}}\right)^{2}-2 \cos 30^{\circ}$
A. 0
B. $1-\sqrt{3}$
C. $2-\sqrt{3}$
D. 3
6.Ifsin $\alpha+(\sin \alpha)^{2}=1$, then the value of $(\cos \alpha)^{12}+3(\cos \alpha)^{10}+3(\cos \alpha)^{8}+(\cos \alpha)^{6}-1$ is
A. 0
B. 1
C. -1
D. 2
6. If $\cos ^{4} A-\sin ^{4} A=p$, then find the value of p.
A. $2 \cos 2 \mathrm{~A}-1$
B. $2 \cos 2 \mathrm{~A}+1$
C. $\cos 2 \mathrm{~A}-1$
D. $\cos 2 A+1$
7. The minimum value of $16 \tan ^{2} \theta+25 \cot ^{2} \theta$ is
A. 5
B. 4
C. 30
D. 40
8. If $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4,\left(0^{\circ}<\theta<90^{\circ}\right)$, then value of θ is
A. $\pi / 2$
C. $\pi / 6$
(-)
B. $\pi / 3$
9. If $2 \sin \theta+\cos \bar{\theta}=\frac{7}{3}$, then the value of $\tan ^{2} \theta-\sec ^{2} \theta$ is
A. 0
B. -1
C. 2
D. -2

For more PDFs join us on Telegram

Correct answer:

1	2	3	4	5	6	7	8	9	10
D	C	C	A	C	A	A	D	C	B

Explanation:

1. We can rewrite above equation as
$\sin ^{2} 10+\sin ^{2} 80+\sin ^{2} 20+\sin ^{2} 70+\sin ^{2} 30+\sin ^{2} 60+\sin ^{2} 40+\sin ^{2} 50$
equation (A)
We know that $\sin ^{2} x+\sin ^{2}(90-x)=1$
Therefore equation A becomes
$1+1+1+1=4$
Hence, option D is correct.
2. We have $\cos x \cos (60-x) \cos (60+x)$
$=\cos x\left(\cos x \cos 60+\operatorname{Sin} x \operatorname{Sin} 60^{\circ}\right)\left(\cos x \cos 60^{\circ}-\operatorname{Sin} x \operatorname{Sin} 60^{\circ}\right)$
$=\cos x\left(\cos ^{2} x \cos ^{2} 60^{\circ}-\sin ^{2} x \sin ^{2} 60^{\circ}\right)$
$=\cos x\left(\frac{1}{4} \cos ^{2}-\frac{3}{4} \sin ^{2} x\right)$
$=\frac{1}{4}\left\{\cos ^{3} x-3 \cos x\left(1-\cos ^{2} x\right)\right\}$
$=\frac{1}{4}\left(4 \cos ^{3} x-3 \cos x\right)$
$=\frac{1}{4} \cos 3 x$

Thus,
$\cos x^{\circ} \cos (60-x)^{\circ} \cos (60+x)=\frac{1}{4} \cos (3 x)$

Therefore,
$\cos 50^{\circ} \cos 10^{\circ} \cos 110^{\circ}=\frac{1}{4} \cos 150^{\circ}$
$=\frac{1}{4}(-\sqrt{ } 3 / 2)=-\frac{\sqrt{ } 3}{8} \quad \ldots$ eq A

Also $\cos 60^{\circ}=\frac{1}{2} \quad \ldots$ eqB

Put values of eq.A and Eq.B in
$\frac{16}{\sqrt{3}}\left(\cos 50^{\circ} \cos 10 \cos 110^{\circ} \cos 60^{\circ}\right)$, we get
$=\frac{16}{\sqrt{ } 3} \times\left(-\frac{\sqrt{ } 3}{8}\right) \times \frac{1}{2}$
$=-1$
Option C is hence the correct answer.
3. $\cos ^{2} \theta\left(\sqrt{\frac{(1+\sin \theta)(1+\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}}+\sqrt{\frac{(1-\sin \theta)(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}}\right)$
$\Rightarrow \cos ^{2} \theta\left(\sqrt{\frac{(1+\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}+\sqrt{\frac{(1-\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}\right)$
$\Rightarrow \cos ^{2} \theta\left(\frac{1+\sin \theta}{\cos \theta}+\frac{1-\sin \theta}{\cos \theta}\right)$
$\Rightarrow \cos ^{2} \theta\left(\frac{1+\sin \theta+1-\sin \theta}{\cos \theta}\right)=\frac{2 \cos ^{2} \theta}{\cos \theta}=2 \cos \theta$
Hence, option C is correct.
4. $\quad \sin 21^{\circ}=\frac{x}{y}$ $\cos 21^{\circ}=\sqrt{1-\left(\sin 21^{\circ}\right)^{2}}$
$\Rightarrow \sqrt{1-\frac{x^{2}}{y^{2}}}=\frac{\sqrt{y^{2}-x^{2}}}{7}$
$\Rightarrow \sec 21^{\circ}=\frac{y}{\sqrt{y^{2}-x^{2}}}$
According to the question,
$\Rightarrow \sec 21^{\circ}-\sin 69^{\circ}$
$\Rightarrow \sec 21^{\circ}-\sin \left(90-21^{\circ}\right)$
$\Rightarrow \sec 21^{\circ}-\cos 21^{\circ}$
$\Rightarrow \frac{y}{v\left(y^{2}-x^{2}\right)}-\frac{V\left(y^{2}-x^{2}\right)}{y}$
$\Rightarrow \frac{x^{2}}{y v\left(y^{2}-x^{2}\right)}$
Hence, option A is correct.
5. $\left(\frac{\sin 35^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\cos 55^{\circ}}{\sin 35^{\circ}}\right)^{2}-2 \cos 30^{\circ}$
$\Rightarrow\left(\frac{\sin \left(90-35^{\circ}\right)}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\cos \left(90-55^{\circ}\right)}{\sin 35^{\circ}}\right)^{2}-2 \cos 30^{\circ}$
$\Rightarrow\left(\frac{\cos 55^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\sin 35^{\circ}}{\sin 35^{\circ}}\right)^{2}-2 \cos 30^{\circ}$
$\Rightarrow 1+1-2 \times \frac{\sqrt{ } 3}{2}$
$\Rightarrow 2-\sqrt{ } 3$
Hence, option C is correct.
6. $\quad \sin \alpha+(\sin \alpha)^{2}=1$
$\Rightarrow \sin \alpha=1-(\sin \alpha)^{2}$
$\Rightarrow \sin \alpha=(\cos \alpha)^{2}$
According to the question,
we have $(\cos \alpha)^{12}+3(\cos \alpha)^{10}+3(\cos \alpha)^{8}+(\cos \alpha)^{6}-1$
$\Rightarrow\left((\cos \alpha)^{4}+(\cos \alpha)^{2}\right)^{3}-1$
$\Rightarrow\left((\sin \alpha)^{2}+(\cos \alpha)^{2}\right)^{3}-1=1-1=0$
Hence, option A is correct.
7. we know, $a^{2}-b^{2}=(a+b)(a-b)$
$\Rightarrow\left(\cos ^{2} A\right)^{2}-\left(\sin ^{2} A\right)^{2}=\left(\cos ^{2} A+\sin ^{2} A\right)\left(\cos ^{2} A-\sin ^{2} A\right)$
$\Rightarrow\left\{\cos ^{2} A-\left(1-\cos ^{2} A\right)\right\} \quad\left[\right.$ using, $\left.\sin ^{2} A+\cos ^{2} A=1\right]$
$\Rightarrow 2 \cos ^{2} \mathrm{~A}-1$
Hence, option A is correct.
8. Comparing $16 \tan ^{2} \theta+25 \cot ^{2} \theta$ with $a \tan ^{2} \theta+b \cot ^{2} \theta$, we get
$\mathrm{a}=16$
and, $b=25$
We know that the minimum value of such equation $=2 \mathrm{Vab}$
Thus the minimum value $=2 \mathrm{~V}(16 \times 25)$
$\Rightarrow 2 \times 4 \times 5=40$
Hence, option D is correct.
9. $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$
$4 \sin ^{2} \theta+3\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4$
$4 \sin ^{2} \theta+3 \sin ^{2} \theta+3 \cos ^{2} \theta=4$
$\sin ^{2} \theta=\frac{1}{4}$
$\sin \theta=\frac{1}{2}$
$\theta=\frac{\pi}{6}$
Hence, option C is correct.
10. This question is a tricky one. Those who'd start solving it keeping the given equation in mind would just waste their precious time.
Kindly go through the explanation given below:

$$
\tan ^{2} \theta-\sec ^{2} \theta=?
$$

We know that
$1+\sec ^{2} \theta=\tan ^{2} \theta$
$\Rightarrow \sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow \sec ^{2} \theta=1+\tan ^{2} \theta$
So, $\tan ^{2} \theta-\sec ^{2} \theta=-1$
Hence, option B is correct.

For more PDFs join us on Telegram

CLICK HERE

SBI | RBI | IBPS | RRB | SSC | NIACL | EPFO | UGC NET | LIC | RAILWAY | CLAT | RJS

Presents

TestZone

India's least priced Test Series platform

ALL BANK EXAMS

2019-20 Test Series

@ Just

₹ 499/-

300+ Full Length Tests

\boxtimes Brilliant Test Analysis
\checkmark Excellent Content
\boxtimes Unmatched Explanations

JOIN NOW

