-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Triangle Questions for CGL Tier 1, CGL Tier 2, SSC 10+2, Railways Exams.

Triangle Quiz 7

Directions: Kindly study the following Questions carefully and choose the right answer:

1. In the above figure, if area of triangle $A B C$ is 64 sq. units, then find the area of triangle PQR, where D, E and F are mid points of sides of $\triangle A B C$ and P, Q and R are midpoints of sides of $\triangle D E F$.

A. 4 sq units
B. 6 sq units
C. 8 sq units
D. 16 sq units
2. Two medians PS and RT of $\triangle P Q R$ intersect at G at right angles. If $P S=9 \mathrm{~cm}$ and $R T=6 \mathrm{~cm}$, then the length of RS in cm is
A. 10
B. 6
C. 5
D. 3
3. In the adjoining figure, if $B C=a, A C=b, A B=c$ and $\angle C A B=120^{\circ}$, then the correct relation is:

A. $a^{2}=b^{2}+c^{2}+2 b c$
B. $a^{2}=b^{2}+c^{2}-2 b c$
C. $a^{2}=b^{2}+c^{2}+b c$
D. $a^{2}=b^{2}+c^{2}-b c$
4. The length of side $A B$ and side $B C$ of a scalene triangle $A B C$ are 12 cm and 8 cm respectively. The value of angle C is 59°. Find the length of side $A C$.
A. 12
B. 10
C. 14
D. 16
5. The coordinates of the in centre of the triangle whose sides are $3 x-4 y=0,5 x+12 y=0$ and $\mathrm{y}-15=0$, are
A. $(1,8)$
B. $(-1,8)$
C. $(2,8)$
D. $(2,-8)$
6. If $A D, B E, C F$ arc the medians of a $\triangle A B C$ then the correct relation between the sum of the squares of sides to the sum of the squares of median is
A. $2\left(A B^{2}+B C^{2}+A C^{2}\right)=3\left(A D^{2}+B E^{2}+C F^{2}\right)$
B. $4\left(A B^{2}+B C^{2}+A C^{2}\right)=3\left(A D^{2}+B E^{2}+C F^{2}\right)$
C. $3\left(A B^{2}+B C^{2}+A C^{2}\right)=4\left(A D^{2}+B E^{2}+C F^{2}\right)$
D. None of the above
7. If in $\triangle A B C$ and $\triangle D E F, \angle A=50^{\circ}, \angle B=70^{\circ}, \angle C=60^{\circ}, \angle D=60^{\circ}, \angle E=70^{\circ}$ and $\angle F=50^{\circ}$, which of the following is correct?
A. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
B. $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$
C. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$
D. $\triangle \mathrm{ABC} \sim \triangle \mathrm{FED}$
8. $A B C$ is an equilateral triangle inscribed in a circle with $A B=8 \mathrm{~cm}$. Suppose bisector of angle B meets $A C$ at X and circle at Y, then what is the value of $2 \times B X \times B Y$?
A. $136 \mathrm{~cm}^{2}$
B. $128 \mathrm{~cm}^{2}$
C. $116 \mathrm{~cm}^{2}$
D. $74 \mathrm{~cm}^{2}$
9. In a $\triangle A B C, \angle A=90^{\circ}$ and $A D \perp B C$ where D lies on $B C$. If $B C=5 \mathrm{~cm}, A C=3 \mathrm{~cm}$, then $\triangle A B C=$ $\triangle A C D=$?
A. $22: 7$
B. $20: 6$
C. $25: 9$
D. $23: 8$
10. The perimeter of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 45 cm and 30 cm respectively. If $P Q=16 \mathrm{~cm}$ find $A B$
A. 20 cm
B. 22 cm
C. 24 cm
D. 26 cm

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
A	C	C	C	B	C	D	B	C	C

Explanations:

1. Given that,
D, E and F are midpoints of $B C, C A$ and $A B$ and P, Q and R are midpoints of $E F, F D$ and $D E$ we know that,

Area of $\triangle A B C=4 \triangle D E F$

But area of $A B C=64 \mathrm{sq} . \mathrm{cm}$.
$4 \triangle D E F=64 \Rightarrow \Delta D E F=\frac{64}{4}=16$ sq. units

And area $\triangle D E F=4 \triangle P Q R$
$\Rightarrow 4 \triangle P Q R=16=\frac{16}{4}=4$ sq. units.

Hence, option A is correct.
2. $P S=9 \mathrm{~cm}$

$\Rightarrow \mathrm{GS}=\frac{1}{3} \times 9=3 \mathrm{~cm}$
$\mathrm{RT}=6 \mathrm{~cm}$
$\Rightarrow R G=\frac{2}{3} \times 6=4 \mathrm{~cm}$
$\therefore \quad \mathrm{RS}=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=5 \mathrm{~cm}$
Hence, option C is correct.
3. Since $\angle A$ is an obtuse angle in $\triangle A B C$, so
$B C^{2}=A B^{2}+A C^{2}+2 A B \cdot A D$
$=A B^{2}+A C^{2}+2 A B \cdot \frac{1}{2} A C$
$\left[\because A D=A C \cos 60^{\circ}=\frac{1}{2} A C\right]$
$=A B^{2}+A C^{2}+A B \cdot A C$
$\therefore a^{2}=b^{2}+c^{2}+b c$.
Hence, option C is correct.
4.

Given, $A B=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$,
$\angle C=59^{\circ}$
Let $\angle A=\Theta$
$\therefore \angle B=180^{\circ}-\left(59^{\circ}+\Theta\right)=121^{\circ}-\Theta$
Now, let us see the choices. If $A C=12 \mathrm{~cm}$, triangle would not be scalene. Hence, option A is ruled out. If $A C=$ $10 \mathrm{~cm}, A B$ will become the largest side and $\angle C$ the largest angle. But $\angle C=59^{\circ}$. Hence option B is ruled out. So, $A C$ is either 14 cm or 16 cm . In any case, $\angle B$ will be the largest angle and $\angle A$ (say Θ) the smallest:

Also, $\angle B=180^{\circ}-\left(59^{\circ}+\Theta\right)=121^{\circ}-\Theta$
By sine formula,
$\frac{8 \mathrm{~cm}}{\sin \Theta}=\frac{12 \mathrm{~cm}}{\sin 59^{\circ}}=\frac{A C}{\sin \left(121^{\circ}-\Theta\right)}$
Thus, $\frac{8 \mathrm{~cm}}{\sin \Theta} \approx \frac{12 \mathrm{~cm}}{\sin 60^{\circ}}$
or, $\sin \Theta \approx \frac{8 \mathrm{~cm} \times \sin 60^{\circ}}{12 \mathrm{~cm}}=\frac{2}{3} \times \frac{\sqrt{ } 3}{2}=\frac{1}{\sqrt{ } 3}=0.577$
$\therefore \cos \theta=\sqrt{1-\frac{1}{3}}=\sqrt{\frac{2}{3}}$
$\therefore \sin \left(121^{\circ}-\Theta\right) \approx \sin \left(120^{\circ}-\Theta\right)=\sin 120^{\circ} \cos \theta-\cos 120^{\circ} \sin \theta$
$=\frac{\sqrt{3}}{2} \times \sqrt{\frac{2}{3}}-\frac{-1}{2} \times \frac{1}{\sqrt{3}}=\frac{1}{\sqrt{2}}+\frac{1}{2 \sqrt{3}}=0.996$
Now, $\frac{A C}{\sin \left(121^{\circ}-\Theta\right)} \approx \frac{8 \mathrm{~cm}}{\sin \Theta}$
or, $\mathrm{AC}=\frac{8 \mathrm{~cm} \sin \left(120^{\circ}-\Theta\right)}{\sin \Theta}=\frac{8 \times 0.996}{0.577}=13.809 \approx 14 \mathrm{~cm}$.
Hence, option C is correct.
5.

$3 x-4 y \equiv 0$
$5 x+12 y \equiv 0$
$y-15 \equiv 0$
From (i) and (ii), $\mathrm{A}=(0,0)$
From (i) and (iii), $\mathrm{B}=(20,15)$
From (ii) and (iii), $C=(-36,15)$
$B C=\sqrt{(20+36)^{2}+(15-15)^{2}}=56$
$A B=\sqrt{(20)^{2}+(15)^{2}}=39$
$A C=\sqrt{36^{2}+15^{2}}=39$
Let (α, β) be the incentre co-ordinates of $\triangle A B C$
$\alpha=\frac{56 \times 0+39 \times 20+25(-36)}{56+39+25}$
$=\frac{-900+780}{120}=\frac{-120}{120}=-1$
$\beta=\frac{56 \times 0+39 \times 15+25(15)}{56+39+25}=8$
$\therefore \quad(\alpha, \beta)(-1,8)$
Hence, option B is correct.
6. Let G be the centroid of $\triangle A B C$.

In $\triangle A B C$,
$[\because$ The sum of the squares of any two sides is equal to twice the square of the half of the third side together with the square of the median bisecting the third side]

$\therefore \quad A B^{2}+A C^{2}=2 A D^{2}+2\left(\frac{1}{2} B C\right)^{2}$
$\Rightarrow A B^{2}+B C^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$
$B C^{2}+A B^{2}=2 B E^{2}+\frac{1}{2} A C^{2}$
$B C^{2}+A C^{2}=2 C F^{2}+\frac{1}{2} A B^{2}$
Adding (i), (ii) and (iii), we get
$2\left(A B^{2}+B C^{2}+A C^{2}=2\left(A D^{2}+B E^{2}+C F^{2}\right)\right.$

$$
+\frac{1}{2}\left(A B^{2}+B C^{2}+A C^{2}\right)
$$

$\therefore 3\left(A B^{2}+B C^{2}+A C^{2}\right)=4\left(A D^{2}+B E^{2}+C F^{2}\right)$
Hence, option C is correct.
7.

Clearly, $\triangle \mathrm{ABC} \sim \mathrm{AFED}$
Hence, option D is correct.
8.

$C X=A X=\frac{8}{2}=4 \mathrm{~cm}$
And $B X=\frac{\sqrt{ } 3}{2} \times 8=4 \sqrt{ } 3 \mathrm{~cm}$
$B Y$ and $A C$ are two chords of circle
Therefore $B X \times X Y=C X \times A X$
$X Y=\frac{4 \times 4}{4 \sqrt{ } 3}=\frac{4}{\sqrt{ } 3} \mathrm{~cm}$
$B Y=B X+X Y=4 \sqrt{ } 3+\frac{4}{\sqrt{ } 3}=\frac{16}{\sqrt{ } 3} \mathrm{~cm}$

Hence, $2 \times \mathrm{BX} \times \mathrm{BY}=2 \times 4 \sqrt{ } 3 \times \frac{16}{\sqrt{ } 3}=128 \mathrm{~cm}^{2}$
Therefore, option (B) is correct.
9.

In $\triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC} \triangle \mathrm{BAC} \sim \triangle \mathrm{ADC} \therefore$ Ratio of area of triangles $=$ Ratio of square of their corresponding sides. hence,
$\frac{\text { area of } \mathrm{BAC}}{\text { Are of } \mathrm{ADC}}=\frac{(\mathrm{BC})^{2}}{(\mathrm{AC})^{2}}=\frac{25}{9}$

Ratio $=25: 9$
Hence, option (C) is correct.
10.

In similar triangle, $\triangle A B C$ and $\triangle P Q R$
$\frac{A B}{P Q}=\frac{A C}{P R}=\frac{B C}{Q R}=\frac{\text { Perimeter of } A B C}{\text { Perimeter of } P Q R}$
$\frac{A B}{16}=\frac{45}{30}$
$\Rightarrow A B=\frac{45}{30} \times 16$
$\Rightarrow \frac{3}{2} \times 16=24 \mathrm{~cm}$
Hence, option (C) is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़
 ■ (3)

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-
 300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\checkmark बेजोड़ व्याख्या

