

Triangle Questions for SSC Exam.

Triangle Quiz 5

Directions: Kindly study the following Questions carefully and choose the right answer:

1. If the hypotenuse of a right triangle is **41** cm and the sum of the other two sides is **49** cm, find the difference between the other sides.

A. 30 cm	B. 31 cm	C. 32 cm	D. 29 cm							
2. A point D is taken from the side BC of a right-angled triangle ABC, where AB is hypotenuse. Then										
$A. AB^2 + CD^2 = BC^2 + AD^2$	$B. CD^2 + BD^2 = 2AD^2$	$C. CD^2 + BD^2 = 2AD^2$	$D. AB^2 = AD^2 + BD^2$							
3. In a right-angled triangle, the product of two sides is equal to half of the square of the third side i.e., hypotenuse. One of the acute angle must be										
A. 60°	B. 30°	C. 45°	D. 15°							
4. AB <mark>C is an isosc</mark> eles triangle such that AB = AC and AD is the median to the base BC with $∠$ ABC = 35°. Then ∠BAD is										
A. 35°	B. 55° COLLES	C. 70°	D. 110°							
5. An isosceles triangle ABC is right-angled at B. D is a point inside the triangle ABC. P and Q are the feet of the perpendiculars drawn from D on the side AB and AC respectively of Δ ABC. If AP = a cm, AQ = b cm and \angle BAD = 15°, sin 75° = ?										
A. $\frac{2b}{\sqrt{3a}}$	B. $\frac{a}{2b}$	C. $\frac{\sqrt{3a}}{2b}$	D. $\frac{2a}{\sqrt{3b}}$							
6. Which of the set of three sides can't form a triangle?										
A. 5 cm, 6 cm, 7 cm	B. 5 cm, 8 cm, 15 cm	C. 8 cm, 15 cm, 18 cm	D. 6 cm, 7 cm, 11 cm							
7. If $\triangle ABC \cong \triangle DEF$ and $AB = 9.1$ cm and $DE = 6.5$ cm. If perimeter of $\triangle DEF$ is 25 cm, then perimeter of $\triangle ABC$ is										
A. 36 cm	B. 30 cm	C. 34 cm	D. 35 cm							

Correct Answers:

1	2	3	4	5	6	7	8	9	10
В	А	С	В	С	В	D	В	С	Α

Explanations:

1. Traditional Method :

Let the other two sides be x and y. Given, x + y = 49 cm and, $41^2 = x^2 + y^2$ [By Pythagoras theorem] $(x + y)^2 = x^2 + y^2 + 2xy$ $\Rightarrow 49^2 = 41^2 + 2xy$ $\Rightarrow 2401 = 1681 + 2xy$ $\Rightarrow 2xy = 2401 - 1681 = 720$ $(x - y)^2 = x^2 + y^2 - 2xy$ $\Rightarrow (x - y)^2 = 41^2 - 720 = 1681 - 720 = 961$ $\Rightarrow x - y = 31$ cm

Intuitive Method :

Following the Pythagorean triples, if the hypotenuse is 41 units, the only possible combination of the other two sides must be 40 units and 9 units.

And therefore, the difference between the other two sides will be 40 - 9 = 31 cm.

Hence, option B is correct.

Given, $\triangle ABC$ is an isosceles triangle and $\angle B$ is right-angled. $\therefore \angle A = \angle C$ and $\angle B = 90^{\circ}$ We know that the sum of the angles of a triangle is 180°. $\therefore \angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \angle A + 90^\circ + \angle A = 180^\circ$ [$\because \angle B = 90^\circ \& \angle A = \angle C$] $\Rightarrow 2 \angle A = 180^{\circ} - 90^{\circ} = 90^{\circ}$ $\Rightarrow \angle A = 45^{\circ}$ and $\angle C = 45^{\circ}$ [$\because \angle A = \angle C$] From ΔADP, $[\angle BAD = 15^{\circ} (given)]$ $\therefore \angle PAD = 15^{\circ}$ $\angle APD + \angle PAD + \angle ADP = 180^{\circ}$ $[PD \perp AB \therefore \angle APD = 90^{\circ}]$ \Rightarrow 90° + 15° + \angle ADP = 180° $\Rightarrow \angle ADP = 180^\circ - 90^\circ - 15^\circ = 75^\circ$ Now, $\angle A = \angle BAD + \angle DAC$ \Rightarrow 45° = 15° + \angle DAC $\Rightarrow \angle DAC = 45^{\circ} - 15^{\circ} = 30^{\circ}$ $\therefore \angle DAQ = 30^{\circ}$ From $\triangle ADQ$, $\angle AQD + \angle DAQ + \angle ADQ = 180^{\circ}$ \Rightarrow 90° + 30° + \angle ADQ = 180° [DQ \perp AC $\therefore \angle$ AQD = 90°] $\Rightarrow \angle ADQ = 180^\circ - 90^\circ - 30^\circ = 60^\circ$ Again from $\triangle ADQ$, $\sin 60^\circ = \frac{AQ}{AD}$ $\Rightarrow \frac{\sqrt{3}}{2} = \frac{b}{AD}$ $\Rightarrow AD = \frac{2b}{\sqrt{3}}$ Again from $\triangle ADP$, $\sin 75^\circ = \frac{AP}{AD} = \frac{a}{2b/\sqrt{3}} = \frac{a\sqrt{3}}{2b}$ Hence, option C is correct.

