-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Triangle Questions for SSC Exam.

Triangle Quiz 5

Directions: Kindly study the following Questions carefully and choose the right answer:

1. If the hypotenuse of a right triangle is 41 cm and the sum of the other two sides is 49 cm , find the difference between the other sides.
A. 30 cm
B. 31 cm
C. 32 cm
D. 29 cm
2. A point D is taken from the side $B C$ of a right-angled triangle $A B C$, where $A B$ is hypotenuse. Then
A. $A B^{2}+C D^{2}=B C^{2}+A D^{2}$
B. $C D^{2}+B D^{2}=2 A D^{2}$
C. $C D^{2}+B D^{2}=2 A D^{2}$
D. $A B^{2}=A D^{2}+B D^{2}$
3. In a right-angled triangle, the product of two sides is equal to half of the square of the third side i.e., hypotenuse. One of the acute angle must be
A. 60°
B. 30°
C. 45°
D. 15°
4. $A B C$ is an isosceles triangle such that $A B=A C$ and $A D$ is the median to the base $B C$ with $\angle A B C=35^{\circ}$. Then $\angle B A D$ is
A. 35°
B. 55°
C. 70°
D. 110°
5. An isosceles triangle $A B C$ is right-angled at B. D is a point inside the triangle $A B C$. P and Q are the feet of the perpendiculars drawn from D on the side $A B$ and $A C$ respectively of $\triangle A B C$. If $A P=a \mathrm{~cm}, A Q=b \mathrm{~cm}$ and $\angle B A D=15^{\circ}, \sin 75^{\circ}=$?
A. $\frac{2 b}{\sqrt{3 a}}$
B. $\frac{a}{2 b}$
C. $\frac{\sqrt{3 a}}{2 b}$
D. $\frac{2 a}{\sqrt{3 b}}$
6. Which of the set of three sides can't form a triangle?
A. $5 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$
B. $5 \mathrm{~cm}, 8 \mathrm{~cm}, 15 \mathrm{~cm}$
C. $8 \mathrm{~cm}, 15 \mathrm{~cm}, 18 \mathrm{~cm}$
D. $6 \mathrm{~cm}, 7 \mathrm{~cm}, 11 \mathrm{~cm}$
7. If $\triangle A B C \cong \triangle D E F$ and $A B=9.1 \mathrm{~cm}$ and $D E=6.5 \mathrm{~cm}$. If perimeter of $\triangle D E F$ is 25 cm , then perimeter of $\triangle A B C$ is
A. 36 cm
B. 30 cm
C. 34 cm
D. 35 cm
8. In a triangle $A B C, A B+B C=12 \mathrm{~cm}, B C+C A=14 \mathrm{~cm}$ and $C A+A B=18 \mathrm{~cm}$. Find the radius of the circle (in cm) which has the same perimeter as the triangle-
A. $\frac{5}{2}$
B. $\frac{7}{2}$
C. $\frac{9}{2}$
D. $\frac{12}{2}$
9. The sides of triangle are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm . The area (in cm 2) of the triangle formed by joining the mid-points of the sides of the triangle is:
A. 6
B. 2
C. $\frac{3}{2}$
D. $\frac{3}{4}$
10. In the figure given, $\angle B A C: \angle A B C=2: 3$. Find the measure of $\angle A B C$.

A. 72°
B. 120°
C. 36°
D. 108°

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	A	C	B	C	B	D	B	C	A

Explanations:

1. Traditional Method:

Let the other two sides be x and y .
Given, $x+y=49 \mathrm{~cm}$
and, $41^{2}=x^{2}+y^{2} \quad$ [By Pythagoras theorem]
$(x+y)^{2}=x^{2}+y^{2}+2 x y$
$\Rightarrow 49^{2}=41^{2}+2 x y$
$\Rightarrow 2401=1681+2 x y$
$\Rightarrow 2 x y=2401-1681=720$
$(x-y)^{2}=x^{2}+y^{2}-2 x y$
$\Rightarrow(x-y)^{2}=41^{2}-720=1681-720=961$
$\Rightarrow x-y=31 \mathrm{~cm}$

Intuitive Method :

Following the Pythagorean triples, if the hypotenuse is 41 units, the only possible combination of the other two sides must be 40 units and 9 units.

And therefore, the difference between the other two sides will be 40-9 =31 cm.

Hence, option B is correct.
2.

In $\triangle A B C$,
$A B^{2}=A C^{2}+B C^{2} \quad[B y$ Pythagoras theorem $]$
$\Rightarrow A C^{2}=A B^{2}-B C^{2}$
In $\triangle A C D$,
$A D^{2}=A C^{2}+C D^{2} \quad$ [By Pythagoras theorem]
$\Rightarrow A D^{2}=A B^{2}-B C^{2}+C D^{2} \quad$ [From eq. (i)]
$\Rightarrow A B^{2}+C D^{2}=B C^{2}+A D^{2}$
Hence, option A is correct.
3.

According to the question,
$A B \times B C=\frac{A C^{2}}{2}$
$\Rightarrow A C^{2}=2 \times A B \times B C$
$\Rightarrow A B^{2}+B C^{2}=2 \times A B \times B C \quad\left[B y\right.$ Pythagoras theorem, $\left.A C^{2}=A B^{2}+B C^{2}\right]$
$\Rightarrow A B^{2}+B C^{2}-2 \times A B \times B C=0$
$\Rightarrow(A B-B C)^{2}=0$
$\Rightarrow A B=B C$
$\therefore \angle \mathrm{C}=\angle \mathrm{A}$
In $\triangle A B C$,
We know that the sum of the angles of a triangle is 180°.
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+90^{\circ}+\angle A=180^{\circ} \quad[\because \triangle A B C$ is an right-angled triangle $]$
$\Rightarrow 2 \angle A=180^{\circ}-90^{\circ}=90^{\circ}$
$\Rightarrow \angle A=45^{\circ}$ and $\angle C=45^{\circ} \quad[\because \angle A=\angle C]$
Hence, option C is correct.
4.

$A D$ is the median to the base $B C$.
$\therefore \angle A D B=90^{\circ}$
Given, $\angle A B C=35^{\circ}$
$\therefore \angle A B D=35^{\circ}$
In $\triangle A B D$,
We know that the sum of the angles of a triangle is 180°.
$\angle A B D+\angle A D B+\angle B A D=180^{\circ}$
$35^{\circ}+90^{\circ}+\angle B A D=180^{\circ}$
$\angle B A D=180^{\circ}-35^{\circ}-90^{\circ}=55^{\circ}$
Hence, option B is correct.
5.

Given, $\triangle A B C$ is an isosceles triangle and $\angle B$ is right-angled.
$\therefore \angle A=\angle C$
and $\angle B=90^{\circ}$
We know that the sum of the angles of a triangle is 180°.
$\therefore \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+90^{\circ}+\angle A=180^{\circ} \quad\left[\because \angle B=90^{\circ} \& \angle A=\angle C\right]$
$\Rightarrow 2 \angle A=180^{\circ}-90^{\circ}=90^{\circ}$
$\Rightarrow \angle A=45^{\circ}$ and $\angle C=45^{\circ} \quad[\because \angle A=\angle C]$
From \triangle ADP,
$\angle \mathrm{APD}+\angle \mathrm{PAD}+\angle \mathrm{ADP}=180^{\circ} \quad\left[\begin{array}{l}\angle \mathrm{BAD}=15^{\circ} \text { (given) } \\ \therefore \angle \mathrm{PAD}=15^{\circ}\end{array}\right]$
$\Rightarrow 90^{\circ}+15^{\circ}+\angle A D P=180^{\circ} \quad\left[P D \perp A B \quad \therefore \angle A P D=90^{\circ}\right]$
$\Rightarrow \angle A D P=180^{\circ}-90^{\circ}-15^{\circ}=75^{\circ}$
Now, $\angle A=\angle B A D+\angle D A C$
$\Rightarrow 45^{\circ}=15^{\circ}+\angle D A C$
$\Rightarrow \angle D A C=45^{\circ}-15^{\circ}=30^{\circ}$
$\therefore \angle \mathrm{DAQ}=30^{\circ}$
From $\triangle A D Q$,
$\angle A Q D+\angle D A Q+\angle A D Q=180^{\circ}$
$\Rightarrow 90^{\circ}+30^{\circ}+\angle A D Q=180^{\circ} \quad\left[D Q \perp A C \quad \therefore \angle A Q D=90^{\circ}\right]$
$\Rightarrow \angle A D Q=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}$
Again from $\triangle A D Q$,
$\sin 60^{\circ}=\frac{A Q}{A D}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{b}{A D}$
$\Rightarrow \mathrm{AD}=\frac{2 b}{\sqrt{3}}$
Again from $\triangle A D P$,
$\sin 75^{\circ}=\frac{A P}{A D}=\frac{a}{2 b / \sqrt{3}}=\frac{a \sqrt{3}}{2 b}$
Hence, option C is correct.
6. We know that sum of any two sides of a triangle must be greater than the 3rd side.

We can observe that option 'B' doesn't satisfy this condition as
$5+8>15$
Option B hence is the correct answer.
Hence, option B is correct.
7. If two triangles are congruent,
$\frac{\operatorname{Per}(\triangle A B C)}{\operatorname{Per}(\triangle D E F)}=\frac{A B}{D E}$
$\frac{\operatorname{Per}(\triangle \mathrm{ABC})}{25}=\frac{9.1}{6.5}$
$\operatorname{Per}(\triangle A B C)=35 \mathrm{~cm}$
Hence, option D is correct.
8.

In $\triangle A B C$,
$A B+B C=12 \mathrm{~cm}$
$B C+C A=14 \mathrm{~cm}$
And, $C A+A B=18 \mathrm{~cm}$
$\Rightarrow 2(A B+B C+C A)=44 \mathrm{~cm}$
$\Rightarrow A B+B C+C A=22 \mathrm{~cm}$

ATQ, $2 \pi \mathrm{r}=22 \mathrm{~cm}$
$\Rightarrow 2 \times \frac{22}{7} \times 22 \mathrm{~cm} \Rightarrow r=\frac{7}{2} \mathrm{~cm}$
Hence, option B is correct.
9.

Sides are 3,4 and 5 cm .
Triangle $A B C$ is a right angled triangle where $\angle B=90^{\circ}$.
Therefore, area of the triangle $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 4 \times 3=6 \mathrm{~cm}^{2}$

Applying the midpoint theorem which says that if we join the mid points of the sides of a tirangle, the 4 triangles thus made will be equal in areas.
\therefore The area of the triangle DEF $=\frac{1}{4} \times$ area of triangle $A B C$

So, Area of $\triangle D E F=\frac{1}{4} \times$ Area of triangle $A B C=\frac{1}{4} \times 6 \mathrm{~cm}^{2}$
$=\frac{3}{2} \mathrm{~cm}^{2}$

Hence, option C is correct.
10. Let $\angle A=2 x$ and $\angle B=3 x$

Then, $2 x+3 x=120^{\circ}$ (exterior angle is equal to the sum of the interior opposite angles)
$\Rightarrow 5 x=120^{\circ}$
$\Rightarrow \mathrm{x}=24^{\circ}$
$\therefore \quad \angle \mathrm{ABC}=3 \mathrm{x}=3 \times 24^{\circ}=72^{\circ}$
Hence, option A is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़
 ■ (3)

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-
 300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\checkmark बेजोड़ व्याख्या

