

## Triangle Questions for SSC Exams (CGL Tier 1, CGL Tier 2 \& SSC $10+2$ )

## Triangle Quiz 4

Directions: Study the following questions carefully and choose the right answer:

1. The sides of a triangle are in the ratio $3: 4: 6$. The triangle is :
A. acute-angled
B. right-angled
C. obtuse-angled
D. either acute-angled or right-angled
2. If the circumcentre of a triangle lies outside it, then the triangle is
A. Equilateral
B. Acute angled
C. Right angled
D. Obtuse angled
3. Taking any three of the line segments out of segments of length $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5$ cm and 6 cm , the number of triangles that can be formed is :
A. 3
B. 2
C. 1
D. 4
4. If the length of the sides of a triangle are in the ratio 4:5:6 and the inradius of the triangle is 3 cm , then the altitude of the triangle corresponding to the largest side as base is :
A. 7.5 cm
B. 6 cm
C. 10 cm
D. 8 cm
5. $A B C$ is a triangle. The bisectors of the internal angle $\angle B$ and external angle $\angle C$ intersect at $D$. if $\angle B D C=50^{\circ}$, then $\angle A$ is
A. $100^{\circ}$
B. $90^{\circ}$
C. $120^{\circ}$
D. $60^{\circ}$
6. In a triangle $A B C$, the side $B C$ is extended up to $D$. Such that $C D=A C$, if $\angle B A D=$ $109^{\circ}$ and $\angle A C B=72^{\circ}$ then the value of $\angle A B C$ is
A. $35^{\circ}$
B. $60^{\circ}$
C. $40^{\circ}$
D. $45^{\circ}$
7. $I$ is the incentre of $\triangle A B C, \angle A B C=60^{\circ}$ and $\angle A C B=50^{\circ}$. Then $\angle B I C$ is :
A. $55^{\circ}$
B. $125^{\circ}$
C. $70^{\circ}$
D. $65^{\circ}$
8. $I$ is the incentre of a triangle $A B C$. If $\angle A B C=65^{\circ}$ and $\angle A C B=55^{\circ}$, then the value of $\angle B I C$ is
A. $130^{\circ}$
B. $120^{\circ}$
C. $140^{\circ}$
D. $110^{\circ}$
9. If two angles of a triangle are $21^{\circ}$ and $38^{\circ}$, then the triangle is
A. Right-angled triangle
B. Acute-angled triangle
C. Obtuse-angled triangle
D. Isosceles triangle
10. In a triangle $A B C$, if $\angle A+\angle C=140^{\circ}$ and $\angle A+3 \angle B=180^{\circ}$, then $\angle A$ is equal to
A. $80^{\circ}$
B. $40^{\circ}$
C. $60^{\circ}$
D. $20^{\circ}$

## Correct Answers:

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | D | B | A | A | A | B | B | C | C |

## Explanations:

1. 

Let the sides of the triangle be $3 x, 4 x$ and $6 x$ units.
Clearly, $(3 x)^{2}+(4 x)^{2}<(6 x)^{2}$
$\therefore$ The triangle will be obtuse angled.
Hence, option C is correct.
2.

The right bisectors of the sides of a triangle meet at a point. The point of intersection is called circum-centre. For an obtuse angled triangle, circum-centre lies outside the triangle.

Hence, option D is correct.
3.

We know that "The sum of two sides of a triangle should be greater than the third side."
Following this we can get only two possible combinations using the given details as mentioned below.
$(3,5,6)$ and $(2,5,6)$
Hence, option B is correct.
4.


Let, $A B=4 x \mathrm{~cm}, B C=5 x \mathrm{~cm}, C A=6 x \mathrm{~cm}$
Now, $\triangle \mathrm{OBA}+\triangle \mathrm{BOC}+\triangle \mathrm{AOC}=\triangle \mathrm{ABC}$
$\Rightarrow \frac{1}{2} \times 4 x \times 3+\frac{1}{2} \times 5 x \times 3+\frac{1}{2} \times 6 x \times 3=\frac{1}{2} \times 6 x \times h$
$\Rightarrow 6 x+\frac{15 x}{2}+9 x=3 x h$
$\Rightarrow 12+15+18=6 h$
$\Rightarrow 45=6 \mathrm{~h}$
$\Rightarrow \mathrm{h}=7.5 \mathrm{~cm}$
Hence, option A is correct.
5.


We know that, Exterior angle is sum of opposite interior angles
$\therefore \angle A C E=\angle A+\angle A B C$
$\Rightarrow 2 y=\angle A+2 x$
$\Rightarrow \angle A=2 y-2 x$
Similarly,
$\angle D C E=\angle D B C+\angle B D C$
$\Rightarrow y=x+50^{\circ}$
From equation (i)
$\angle A=2\left(x+50^{\circ}\right)-2 x=2 x+100^{\circ}-2 x=100^{\circ}$
Hence, option A is correct.
6.


We know that, Exterior angle is sum of opposite interior angles
$\therefore \angle C A D+\angle A D C=\angle A C B=72^{\circ}$
$2 \angle A D C=72^{\circ} \quad[\because A C=D C \Rightarrow \angle C A D=\angle A D C]$
$\angle A D C=36^{\circ}$
In $\triangle A B D$, we know that
$\angle A B C=180^{\circ}-\angle B A D-\angle A D B=180^{\circ}-109^{\circ}-36^{\circ}=35^{\circ}$
Hence, option A is correct.
7.


Given, $\angle A B C=60^{\circ}$ and $\angle A C B=50^{\circ}$
$\angle \mathrm{IBC}=\frac{1}{2} \angle \mathrm{ABC}=30^{\circ}$
$\angle I C B=\frac{1}{2} \angle \mathrm{ACB}=25^{\circ}$
In $\triangle I B C$, we know that
$\therefore \angle B I C=180^{\circ}-\angle I B C-\angle I C B=180^{\circ}-30^{\circ}-25^{\circ}=125^{\circ}$
Hence, option B is correct.
8.


Given, $\angle A B C=65^{\circ}$ and $\angle A C B=55^{\circ}$ $\angle \mathrm{IBC}=\frac{1}{2} \angle \mathrm{ABC}=32.5^{\circ}$
$\angle I C B=\frac{1}{2} \angle A C B=27.5^{\circ}$
In $\triangle I B C$, we know that
$\therefore \angle \mathrm{BIC}=180^{\circ}-\angle \mathrm{IBC}-\angle I C B=180^{\circ}-32.5^{\circ}-27.5^{\circ}=120^{\circ}$
Hence, option B is correct.
9.

Third angle of triangle $=180^{\circ}-21^{\circ}-38^{\circ}=121^{\circ}>90^{\circ}$
i.e. obtuse angle.

Hence, option C is correct.
10.

We know that, the sum of the angles of a triangle is $180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$\therefore \angle B=180^{\circ}-140^{\circ}=40^{\circ} \quad\left[\because \angle A+\angle C=140^{\circ}\right]$
It is also given,
$\angle A+3 \angle B=180^{\circ}$
$\Rightarrow \angle A+3 \times 40^{\circ}=180^{\circ}$
$\Rightarrow \angle A=180^{\circ}-120^{\circ}=60^{\circ}$
Hence, option C is correct.

# $\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं <br> <br> TestZone <br> <br> TestZone भारत की सबसे किफायती टेस्ट सीरीज़ <br>  

## 12 Month Plan

2017-18 All Test Series

@ Just

## ₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण<br>『 उत्कृष्ट विषय सामग्री<br>$\square$ बेजोड़ व्याख्या

