

Triangle Questions for SSC Exams (CGL Tier 1, CGL Tier 2 \& SSC 10+2)

Triangle Quiz 3

Directions: Study the following questions carefully and choose the right answer:

1. $A B C$ is an equilateral triangle and $C D$ is the internal bisector of $\angle C$. If $D C$ is produced to E such that $A C=C E$, then $\angle C A E$ is equal to
A. 45°
B. 75°
C. 30°
D. 15°
2. G is the centroid of the equilateral $\triangle A B C$. If $A B=10 \mathrm{~cm}$ then length of $A G$ is
A. $\frac{5 \sqrt{3}}{3} \mathrm{~cm}$
B. $\frac{10 \sqrt{3}}{3} \mathrm{~cm}$
C. $5 \sqrt{3} \mathrm{~cm}$
D. $10 \sqrt{3} \mathrm{~cm}$
3. The radius of the incircle of the equilateral triangle having each side 6 cm is
A. $2 \sqrt{3} \mathrm{~cm}$
B. $\sqrt{3} \mathrm{~cm}$
C. $6 \sqrt{3} \mathrm{~cm}$
D. 2 cm
4. If the three medians of a triangle are same then the triangle is
A. equilateral
B. isosceles
C. right-angled
D. obtuse-angle
5. If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$ then $A B$ is :
A. 5 cm
B. 5 cm
C. $5 \sqrt{2} \mathrm{~cm}$
D. 2.5 cm
6. $A B C$ is an isosceles triangle such that $A B=A C$ and $\angle B=35^{\circ} . A D$ is the median to the base $B C$. Then $\angle B A D$ is :
A. 70°
B. 35°
C. 110°
D. 55°
7. In an isosceles triangle, if the unequal angle is twice the sum of the equal angles, then each equal angle is
A. 120°
B. 60°
C. 30°
D. 90°
8. $\triangle A B C$ is an isosceles triangle and $A B=A C=2 a$ unit, $B C=a$ unit. Draw $A D \perp B C$, and find the length of AD.
A. $\sqrt{15}$ a unit
B. $\frac{\sqrt{15}}{2}$ a unit
C. $\sqrt{17}$ a unit
D. $\frac{\sqrt{17}}{2}$ a unit
9. $A B C$ is an isosceles triangle with $A B=A C$. The side $B A$ is produced to D such that $A B=A D$. If $\angle A B C=30^{\circ}$, then $\angle B C D$ is equal to
A. 45°
B. 90°
C. 30°
D. 60°
10. In a triangle $A B C, A B=A C, \angle B A C=40^{\circ}$. Then the external angle at B is:
A. 90°
B. 70°
C. 110°
D. 80°

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	B	B	A	D	D	C	B	B	C

Explanations:

1.

$\angle B C A=60^{\circ} \quad[\because \triangle P Q R$ is an equilateral $]$
$\angle B C D=\angle D C A=30^{\circ} \quad[\because C D$ is bisector of $\angle C$ of an equilateral triangle $]$
$\angle D C E=180^{\circ}$
$\angle A C E=180^{\circ}-30^{\circ}=150^{\circ}$
$\angle C A E+\angle C E A=180^{\circ}-150^{\circ}=30^{\circ}$
Given, $A C=C E$
$\therefore \angle C E A=\angle C A E$
From Eq. (i),
$2 \angle C A E=30^{\circ}$
$\therefore \angle \mathrm{CAE}=15^{\circ}$
Hence, option D is correct.
2.
$A B=10 \mathrm{~cm}$
$\therefore \mathrm{BD}=\frac{\mathrm{AB}}{2}=5 \mathrm{~cm}$

$\angle A D B=90^{\circ}$
By pythagoras theorem in $\triangle A B D$,
$\therefore \mathrm{AD}=\sqrt{A B^{2}-B D^{2}}$
$=\sqrt{10^{2}-5^{2}}=\sqrt{75}=5 \sqrt{3} \mathrm{~cm}$
We know that,
$\mathrm{AG}=\frac{2}{3} \mathrm{AD}=\frac{2}{3} \times 5 \sqrt{3}=\frac{10 \sqrt{3}}{3} \mathrm{~cm}$
Hence, option B is correct.
3.

Smart way :
Note : Radius of incircle of an equilateral triangle of side $a=\frac{a}{2 \sqrt{3}}$.
\therefore Required radius of the incircle $=\frac{6}{2 \sqrt{3}}=\sqrt{3}$
Traditional method:
$A B=6 \mathrm{~cm}$
$\therefore B D=A B=3 \mathrm{~cm}$
2
$\angle A D B=90^{\circ}$
By pythagoras theorem in $\triangle A B D$,
$\therefore \mathrm{AD}=\sqrt{\mathrm{AB}^{2}-\mathrm{BD}^{2}}$
$=\sqrt{6^{2}-3^{2}}=\sqrt{27}=3 \sqrt{3} \mathrm{~cm}$
We know that,
\therefore In-radius $=\frac{1}{3} A D$
$=1 \times 3 \sqrt{3}=\sqrt{3} \mathrm{~cm}$
Hence, option B is correct.
4.

The median of an equilateral triangle are equal.
Hence, option A is correct.
5.

$A C=B C=5 \mathrm{~cm}$
$\therefore \mathrm{AB}=\sqrt{\mathrm{AC}^{2}+\mathrm{BC}^{2}}$
$=\sqrt{5^{2}+5^{2}}=\sqrt{50}=5 \sqrt{2} \mathrm{~cm}$
Hence, option C is correct.
6.

$A B=A C$
$\angle A C B=\angle A B C=35^{\circ}$
Now, $\angle A D B=90^{\circ}$
In $\triangle A B D$, We know that
$\angle A B D+\angle A D B+\angle B A D=180^{\circ}$
$\angle B A D=180^{\circ}-90^{\circ}-35^{\circ}=55^{\circ}$
Hence, option D is correct.
7.

Let, the equal angles are B and C, and unequal angle is A.
$\therefore \angle B=\angle C$
$\therefore \angle A=2(\angle B+\angle C)=2(\angle C+\angle C)=4 \angle C$
We know that,
$\angle A+\angle B+\angle C=180^{\circ}$
$4 \angle C+\angle C+\angle C=180^{\circ}$
$6 \angle C=180^{\circ}$
$\angle C=30^{\circ}$
\therefore Each equal angle is 30°.
Hence, option C is correct.
8.

$A B=A C=2 a$ units
$B C=a$ units
$B D=D C=a$ units
In $\triangle \mathrm{ABD}$, By pythagoras theorem
$A D=\sqrt{\mathrm{AB}^{2}-\mathrm{BD}^{2}}$
$=\sqrt{4 \mathrm{a}^{2}-\frac{\mathrm{a}^{2}}{4}}=\sqrt{\frac{15 \mathrm{a}^{2}}{4}}=\frac{\sqrt{15}}{2}$ a units
Hence, option B is correct.
9.

$A B=A C=A D$
$\angle A C B=\angle A B C=30^{\circ}$
We know that, Exterior angle is equal to the sum of two interior opposite angles
$\therefore \angle \mathrm{DAC}=\angle \mathrm{ABC}+\angle \mathrm{ACB}=30^{\circ}+30^{\circ}=60^{\circ}$
In $\triangle A C D$,
$A C=A D$
$\angle A D C=\angle A C D$
We know that,
$\angle A C D+\angle A D C+\angle D A C=180^{\circ}$
$\angle A C D+\angle A C D+60^{\circ}=180^{\circ} \quad[\because \angle A C D=\angle A D C]$
$2 \angle A C D=180^{\circ}-60^{\circ}=120^{\circ}$
$\angle A C D=60^{\circ}$
Required angle, $\angle \mathrm{BCD}=\angle \mathrm{ACB}+\angle \mathrm{ACD}=30^{\circ}+60^{\circ}=90^{\circ}$
Hence, option B is correct.
10.
$A B=A C$
$\therefore \angle A C B=\angle A B C$
$\angle B A C=40^{\circ}$ (given)

In $\triangle A B C$, we know that
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
$\angle A B C+\angle A B C+40^{\circ}=180^{\circ} \quad[\because \angle A B C=\angle A C B]$
$2 \angle A B C=180^{\circ}-40^{\circ}=140^{\circ}$
$\angle A B C=70^{\circ}$
External angle, $\angle \mathrm{ABD}=180^{\circ}-70^{\circ}=110^{\circ}$
Hence, option C is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

