

Time and work Questions for CDS, CLAT & SSC Exams.								
Time and work Quiz 9								
Directions: Study the following Questions carefully and choose the right answer:								
1. 50 persons can do a work in 12 days, working 6 hours/day. 60 persons can do the same work in 8 days, working x hours per day. The value of x is								
A. 15	B. $7\frac{1}{2}$	C. $5\frac{2}{3}$	D. 5					
2. If 12 men or 18 women can reap a field in 14 days, then working at the same rate, 8 men and 16 women can reap the same field in:								
A. 9 days	B. 5 days	C. 7 days	D. 8 days					
3. A 12 m long road can be dug by 18 men in 20 days. What is length of road can be dug by 12 men in 15 days?								
A. 9 m	B. 8 m	C. 6 m	D. 7 m					
4. 18 boys can do a piece of work in 24 days. In how many days can 27 boys do the same work?								
A. 16 days	B. 32 days	C. 23 days	D. 48 days					
5. A computer can perform 30 identical tasks in 6 hour. At that rate, what is the minimum number of computers that should be assigned to complete 80 of the tasks within 3 hours?								
A. 12	B. 7	C. 6	D. 16					
6. 8 men can complete a piece of work in 20 days. 8 women can complete the same work in 32 days. In how many days will 5 men and 8 women together complete the same work?								
A. 16 days	B. 12 days	C. 14 days	D. 10 days					
7. Some persons can do a piece of work in 12 days. Two times the number of such persons will do half of the work in								
A. 9 days	B. 6 days	C. 5 days	D. 3 days					

8. 2 men and 5 women can do a work in 12 days. 5 men and 2 women can do that work in 9 days. Only 3 women can finish the same work in								
A. 36 days	B. 21 days	C. 30 days	D. 42 days					
9. If 18 binders bind 900 books in 10 days, how many binders will be required to bind 660 books in 12 days?								
A. 22	B. 14	C. 11	D. 8					
10. 4 men and 6 women complete a work in 8 days, 2 men and 9 women also complete in 8 days. The numbers of days 18 women complete the work:								
A. $5\frac{1}{3}$ days	B. 5 $\frac{2}{3}$ days	C. $4\frac{2}{3}$ days	D. $4\frac{1}{3}$ days					
	- Sma The Qu	artKee estion Ban	ada					

Correct Answers:

1	2	3	4	5	6	7	8	9	10
В	А	С	А	С	А	D	А	С	А

Explanations:

1. To solve this question, we can apply a short trick approach;

If M_1 persons can do a piece of work in D_1 days working H_1 hours a day and M_2 persons can do the same work in D_2 days working H_2 a day then we have a short-trick formula which is $M_1D_1H_1 = M_2D_2H_2$ Given:

 $M_{1} = 50, D_{1} = 12 \text{ days, } H_{1} = 6 \text{ hours/day}$ $M_{2} = 60, D_{2} = 8 \text{ days, } H_{2} = ?$ Now, as $M_{1}D_{1}H_{1} = M_{2}D_{2}H_{2}$ $50 \times 12 \times 6 = 60 \times 8 \times ?$ $\Rightarrow ? = \frac{50 \times 12 \times 6}{60 \times 8} = \frac{60}{8}$ $= \frac{15}{2} = 7\frac{1}{2} \text{ hours}$ Hence, option B is correct. **2.** \therefore 12 men \equiv 18 women \therefore 2 men \equiv 3 women \therefore 8 men + 16 women = 28 men \therefore 8 men + 16 women = 28 men \therefore By $M_{1}D_{1} = M_{2}D_{2}$ $\Rightarrow 18 \times 14 = 28 \times D_{2}$ $\Rightarrow D_{2} = \frac{18 \times 14}{28} = 9 \text{ days}$

Hence, option A is correct.

3. To solve this question, we can apply a short trick approach;

If M_1 persons can do W_1 work in D_1 days and M_2 persons can do W_2 work in D_2 days , then we have a shorttrick formula which is $M_1D_1W_2 = M_2D_2W_1$ Given: $M_1 = 18, D_1 = 20$ days, $W_1 = 12$ m $M_2 = 12, D_2 = 15$ days, $W_2 = ?$ Now, as $M_1D_1W_2 = M_2D_2W_1$ $\Rightarrow 18 \times 20 \times ? = 12 \times 15 \times 12$ $\Rightarrow ? = \frac{12 \times 15 \times 12}{18 \times 20} = 6$ m. Hence, option C is correct. 4. To solve this question, we can apply a short trick approach;

If M_1 persons can do a piece of work in D_1 days working and M_2 persons can do the same work in D_2 days then we have formula $M_1D_1 = M_2D_2$

Given: $M_1 = 18$, $D_1 = 24$ days, $M_2 = 27$ boys, $D_2 = ?$ Now, as $M_1D_1 = M_2D_2$ $18 \times 24 = 27 \times D_2$ $\Rightarrow D_2 = \frac{18 \times 24}{27} = 16$ days.

Hence, option A is correct.

5. To solve this question, we can apply a short trick approach;

If M_1 persons can do W_1 work in H_1 hours and M_2 persons can do W_2 work in H_2 hours, then we have formula $M_1H_1W_2 = M_2H_2W_1$ Given: $M_1 = 1, H_1 = 6, W_1 = 30$ $M_2 = ?, H_2 = 3, W_2 = 80$ Now, as $M_1H_1W_2 = M_2H_2W_1$ $1 \times 6 \times 80 = ? \times 3 \times 30$ $\Rightarrow ? = \frac{1 \times 6 \times 80}{3 \times 30} = \frac{16}{3} = 5\frac{1}{3}$ The Question Bank

we can't have fraction number of computers. Hence, we can say to complete 80 tasks, there should be 6 computers operating simultaneously.

Hence, option C is correct.

6. As per the questions, $8 \times 20 \text{ men} = 8 \times 32 \text{ women}$ $\therefore 5 \text{ men} = 8 \text{ women}$ Now, 5 men + 8 women = 8 + 8 = 16 women $\therefore M_1D_1 = M_2D_2$ $\Rightarrow 8 \times 32 = 16 \times D_2$ $\Rightarrow D_2 = \frac{32 \times 8}{16} = 16 \text{ days}$

Hence, option A is correct.

7. To solve this question, we can apply a short trick approach;

If M_1 persons can do W_1 work in D_1 days and M_2 persons can do W_2 work in D_2 days then we have a short-trick formula which is $M_1D_1W_2 = M_2D_2W_1$

Given: $M_1 = m, M_2 = 2m, D_1 = 12 \text{ days}, D_2 = ?, W_1 = w, W_2 = w/2$ Now, as $M_1D_1W_2 = M_2D_2W_1$ $m \times 12 \times \frac{W}{2} = 2m \times ? \times w$ $\Rightarrow ? = \frac{m \times 6 \times w}{2m \times w}$ $\Rightarrow ? = \frac{6}{2} = 3 \text{ days}.$ Hence, option D is correct. 8. As per the questions, $(2M + 5W) \times 12 = (5M + 2W) \times 9$ $\Rightarrow 24 M + 60 W = 45 M + 18 W$ $\Rightarrow 42 W = 21 M$ $\Rightarrow 2W \equiv 1M$ $\therefore 2M + 5W \equiv 9W$

SmartKeeda The Question Bank

$$\Rightarrow D_2 = \frac{9 \times 12}{3} = 36 \text{ days}$$

 $\therefore M_1 D_1 = M_2 D_2$ $\Rightarrow 9 \times 12 = 3 \times D_2$

Hence, option A is correct.

9. To solve this question, we can apply a short trick approach $M_1D_1W_2 = M_2D_2W_1$ Given, $M_1 = 18$, $D_1 = 10$ days, $W_1 = 900$, $M_2 = ?$, $D_2 = 12$ days, $W_2 = 660$ By the short trick approach, we get $18 \times 10 \times 660 = M_2 \times 12 \times 900$

: $M_2 = \frac{660 \times 10 \times 18}{900 \times 12} = 11$ binders.

Hence, option C is correct.

10. $4 m + 6 w \equiv 2 m + 9 w$

2m ≡ 3w

So, $4m + 6 w \equiv 12w$

12 w \rightarrow 8 days

18 w \rightarrow x days

By cross multiplication, we get

 $\therefore x = \frac{12 \times 8}{18} = \frac{16}{3} = 5\frac{1}{3}$ days

Hence, option A is correct.

