-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Time and work Questions for CDS, CLAT \& SSC Exams.

Time and work Quiz 9
Directions: Study the following Questions carefully and choose the right answer:

1. 50 persons can do a work in 12 days, working 6 hours/day. 60 persons can do the same work in 8 days, working x hours per day. The value of x is
A. 15
B. $7 \frac{1}{2}$
C. $5 \frac{2}{3}$
D. 5
2. If 12 men or 18 women can reap a field in 14 days, then working at the same rate, 8 men and 16 women can reap the same field in:
A. 9 days
B. 5 days
C. 7 days
D. 8 days
3. A 12 m long road can be dug by 18 men in 20 days. What is length of road can be dug by 12 men in 15 days?
A. 9 m
B. 8 m
C. 6 m
D. 7 m
4. 18 boys can do a piece of work in 24 days. In how many days can 27 boys do the same work?
A. 16 days
B. 32 days
C. 23 days
D. 48 days
5. A computer can perform 30 identical tasks in 6 hour. At that rate, what is the minimum number of computers that should be assigned to complete 80 of the tasks within 3 hours?
A. 12
B. 7
C. 6
D. 16
6. 8 men can complete a piece of work in 20 days. 8 women can complete the same work in 32 days. In how many days will 5 men and 8 women together complete the same work?
A. 16 days
B. 12 days
C. 14 days
D. 10 days
7. Some persons can do a piece of work in 12 days. Two times the number of such persons will do half of the work in
A. 9 days
B. 6 days
C. 5 days
D. 3 days
8. 2 men and 5 women can do a work in 12 days. 5 men and 2 women can do that work in 9 days. Only 3 women can finish the same work in
A. 36 days
B. 21 days
C. 30 days
D. 42 days
9. If 18 binders bind 900 books in 10 days, how many binders will be required to bind 660 books in 12 days?
A. 22
B. 14
C. 11
D. 8
10. 4 men and 6 women complete a work in 8 days, 2 men and 9 women also complete in 8 days. The numbers of days 18 women complete the work:
A. $5 \frac{1}{3}$ days
B. $5 \frac{2}{3}$ days
C. $4 \frac{2}{3}$ days
D. $4 \frac{1}{3}$ days

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	A	C	A	C	A	D	A	C	A

Explanations:

1. To solve this question, we can apply a short trick approach;

If M_{1} persons can do a piece of work in D_{1} days working H_{1} hours a day and M_{2} persons can do the same work in D_{2} days working H_{2} a day then we have a short-trick formula which is $M_{1} D_{1} H_{1}=M_{2} D_{2} H_{2}$
Given:
$\mathrm{M}_{1}=50, \mathrm{D}_{1}=12$ days, $\mathrm{H}_{1}=6$ hours/day
$M_{2}=60, D_{2}=8$ days, $H_{2}=$?
Now, as
$\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{H}_{1}=\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{H}_{2}$
$50 \times 12 \times 6=60 \times 8 \times$?
$\Rightarrow ?=\frac{50 \times 12 \times 6}{60 \times 8}=\frac{60}{8}$
$=\frac{15}{2}=7 \frac{1}{2}$ hours
Hence, option B is correct.
2. $\because 12$ men $\equiv 18$ women
$\therefore 2$ men $\equiv 3$ women
$\therefore 8$ men +16 women $=28$ men
\therefore By $\mathrm{M}_{1} \mathrm{D}_{1}=\mathrm{M}_{2} \mathrm{D}_{2}$
$\Rightarrow 18 \times 14=28 \times D_{2}$
$\Rightarrow D_{2}=\frac{18 \times 14}{28}=9$ days
Hence, option A is correct.
3. To solve this question, we can apply a short trick approach;

If M_{1} persons can do W_{1} work in D_{1} days and M_{2} persons can do W_{2} work in D_{2} days, then we have a shorttrick formula which is $M_{1} D_{1} W_{2}=M_{2} D_{2} W_{1}$
Given:
$\mathrm{M}_{1}=18, \mathrm{D}_{1}=20$ days, $\mathrm{W}_{1}=12 \mathrm{~m}$
$\mathrm{M}_{2}=12, \mathrm{D}_{2}=15$ days, $\mathrm{W}_{2}=$?
Now, as
$\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{~W}_{2}=\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{~W}_{1}$
$\Rightarrow 18 \times 20 \times$? $=12 \times 15 \times 12$
\Rightarrow ? $=\frac{12 \times 15 \times 12}{18 \times 20}=6 \mathrm{~m}$.
Hence, option C is correct.
4. To solve this question, we can apply a short trick approach;

If M_{1} persons can do a piece of work in D_{1} days working and M_{2} persons can do the same work in D_{2} days then we have formula $M_{1} D_{1}=M_{2} D_{2}$
Given:
$M_{1}=18, D_{1}=24$ days, $M_{2}=27$ boys, $D_{2}=$?
Now, as
$\mathrm{M}_{1} \mathrm{D}_{1}=\mathrm{M}_{2} \mathrm{D}_{2}$
$18 \times 24=27 \times D_{2}$
$\Rightarrow D_{2}=\frac{18 \times 24}{27}=16$ days.

Hence, option A is correct.
5. To solve this question, we can apply a short trick approach;

If M_{1} persons can do W_{1} work in H_{1} hours and M_{2} persons can do W_{2} work in H_{2} hours, then we have formula $\mathrm{M}_{1} \mathrm{H}_{1} \mathrm{~W}_{2}=\mathrm{M}_{2} \mathrm{H}_{2} \mathrm{~W}_{1}$
Given:
$M_{1}=1, H_{1}=6, W_{1}=30$
$\mathrm{M}_{2}=$?, $\mathrm{H}_{2}=3, \mathrm{~W}_{2}=80$
Now, as
$\mathrm{M}_{1} \mathrm{H}_{1} \mathrm{~W}_{2}=\mathrm{M}_{2} \mathrm{H}_{2} \mathrm{~W}_{1}$
$1 \times 6 \times 80=$? $\times 3 \times 30$
$\Rightarrow ?=\frac{1 \times 6 \times 80}{3 \times 30}=\frac{16}{3}=5 \frac{1}{3}$
we can't have fraction number of computers.
Hence, we can say to complete 80 tasks, there should be 6 computers operating simultaneously.

Hence, option C is correct.
6. As per the questions,
8×20 men $=8 \times 32$ women
$\therefore 5$ men $=8$ women
Now, 5 men +8 women $=8+8=16$ women
$\therefore \mathrm{M}_{1} \mathrm{D}_{1}=\mathrm{M}_{2} \mathrm{D}_{2}$
$\Rightarrow 8 \times 32=16 \times \mathrm{D}_{2}$
$\Rightarrow D_{2}=\frac{32 \times 8}{16}=16$ days

Hence, option A is correct.
7. To solve this question, we can apply a short trick approach;

If M_{1} persons can do W_{1} work in D_{1} days and M_{2} persons can do W_{2} work in D_{2} days then we have a short-trick formula which is $\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{~W}_{2}=\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{~W}_{1}$
Given:
$\mathrm{M}_{1}=\mathrm{m}, \mathrm{M}_{2}=2 \mathrm{~m}, \mathrm{D}_{1}=12$ days, $\mathrm{D}_{2}=$?, $\mathrm{W}_{1}=\mathrm{w}, \mathrm{W}_{2}=\mathrm{w} / 2$
Now, as
$\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{~W}_{2}=\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{~W}_{1}$
$\mathrm{m} \times 12 \times \frac{\mathrm{w}}{2}=2 \mathrm{~m} \times ? \times \mathrm{w}$
$\Rightarrow ?=\frac{\mathrm{m} \times 6 \times \mathrm{w}}{2 \mathrm{~m} \times \mathrm{w}}$
$\Rightarrow ?=\frac{6}{2}=3$ days.

Hence, option D is correct.
8. As per the questions,
$(2 \mathrm{M}+5 \mathrm{~W}) \times 12 \equiv(5 \mathrm{M}+2 \mathrm{~W}) \times 9$
$\Rightarrow 24 \mathrm{M}+60 \mathrm{~W} \equiv 45 \mathrm{M}+18 \mathrm{~W}$
$\Rightarrow 42 \mathrm{~W} \equiv 21 \mathrm{M}$
$\Rightarrow 2 \mathrm{~W} \equiv 1 \mathrm{M}$
$\therefore 2 \mathrm{M}+5 \mathrm{~W} \equiv 9 \mathrm{~W}$
$\therefore \mathrm{M}_{1} \mathrm{D}_{1}=\mathrm{M}_{2} \mathrm{D}_{2}$
$\Rightarrow 9 \times 12=3 \times D_{2}$
$\Rightarrow \mathrm{D}_{2}=\frac{9 \times 12}{3}=36$ days

Hence, option A is correct.
9. To solve this question, we can apply a short trick approach
$M_{1} D_{1} W_{2}=M_{2} D_{2} W_{1}$
Given,
$M_{1}=18, D_{1}=10$ days, $W_{1}=900, M_{2}=$?, $D_{2}=12$ days, $W_{2}=660$
By the short trick approach, we get
$18 \times 10 \times 660=M_{2} \times 12 \times 900$
$\therefore \quad M_{2}=\frac{660 \times 10 \times 18}{900 \times 12}=11$ binders .
Hence, option C is correct.
10. $4 m+6 w \equiv 2 m+9 w$
$2 m \equiv 3 w$
So, $4 m+6 w \equiv 12 w$
$12 w \rightarrow 8$ days
$18 \mathrm{w} \rightarrow \mathrm{x}$ days
By cross multiplication, we get
$\therefore \quad x=\frac{12 \times 8}{18}=\frac{16}{3}=5 \frac{1}{3}$ days
Hence, option A is correct.

12 Month Plan

2017-18 All Test Series
@ Just

$$
\begin{aligned}
& \text { ₹ 399/- } \\
& 300+\text { फुल लेन्थ टेस्ट }
\end{aligned}
$$ अभी जुड़ें

