-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Time and work Questions for CDS, CLAT and SSC Exams.

Time and work Quiz 3
Directions: Study the following Questions carefully and choose the right answer:

1. A and B together can complete a piece of work in 12 days, B and C can do it in 20 days and C and A can do it in 15 days. A, B and C together can complete it in
A. 12 days
B. 6 days
C. 8 days
D. 10 days
2. A works alone, he would take 4 days more to complete the job than if both A and B worked together. If B worked alone, he would take 16 days more to complete the job than if both A and B work together. How many days would they take to complete the work if both of them worked together?
A. 10 days
B. 12 days
C. 6 days
D. 8 days
3. 'A' can do a piece of work in 20 days and ' B ' can do the same work in 15 days. How long will they take to finish the work, if both work together?
A. 15 days
B. 10 days
C. $8 \frac{4}{7}$ days
D. 20 days
4. Ashokan is thrice as good a workman as Nitin and is therefore able to finish a piece of work in 40 days less than Nitin. Find the time in which they can do it working together.
A. 15 days
B. 7 days
C. 16 days
D. 13 days
5. A completes a piece of work in 4 days and B completes it in 6 days. If they both work on it together, then the number of days required to complete the same work is
A. $3 \frac{5}{2}$ days
B. $2 \frac{4}{10}$ days
C. $2 \frac{2}{5}$ days
D. $3 \frac{2}{5}$ days
6. A can complete a piece of work in 12 days. B is 60% more efficient than A. The number of days, that B will take to complete the same work is
A. 6
B. $7 \frac{1}{2}$
C. 8
D. $8 \frac{1}{2}$
7. A can do the piece of work in 20 days which B can do in 12 days. B worked at it for 9 days. A can finish the remaining work in
A. 5 days
B. 7 days
C. 11 days
D. 3 days
8. A and B together can do a work in 10 days. B and C together can do the same work in 6 days. A and C together can do work in 12 days. Then A, B and C together can do the work in
A. 28 days
B. 14 days
C. $5 \frac{5}{7}$ days
D. $8 \frac{2}{7}$ days
9. 2 men and 4 boys can do a piece of work in 10 days, while 4 men and 5 boys can do it in 6 days. Men and Boys are paid wages according to their output. If the daily wage of a man is Rs. 40, then the ratio of daily wages of a man and a boy will be
A. $5: 3$
B. $5: 2$
C. $7: 4$
D. $7: 3$
10. If A and B together can finish a piece of work in 20 days, B and C in 10 days and C and A in 12 days, then $\mathrm{A}, \mathrm{B}, \mathrm{C}$ jointly can finish the same work in
A. $4 \frac{2}{7}$ days
B. 30 days
C. $8 \frac{4}{7}$ days
D. $\frac{7}{60}$ days

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	D	C	A	C	B	A	C	B	C

Explanations:

1. To solve this question, we can apply a short trick approach;

If A and B can do a piece of work in x days, B and C in y days, C and A in z days, then ($A+B+C$) working together will do the same work in
$\left[\frac{2 x y z}{x y+y z+z x}\right]$ days
A and B together finish a piece work $=x=12$ days
B and C together finish a piece work $=y=20$ days
C and A together finish a piece work $=z=15$ days
By the short trick approach :
A, B and C can do the work in
$=\frac{2 \times 12 \times 20 \times 15}{12 \times 20+20 \times 15+15 \times 12}$ days

After taking 20 as a common term we get,
$=\frac{2 \times 12 \times 15}{12+15+9}$ days

After taking 3 as a common term we get,
$=\frac{2 \times 4 \times 15}{4+5+3}$ days $=\frac{120}{12}=10$ days

Hence, option D is correct.
2. To solve this question, we can apply a short trick approach;

If A working alone takes ' x ' days more than A and B, and B working alone takes ' y ' days more than $A \& B$ together then the number of days taken by $A \& B$ working together is given by $[\sqrt{x y}]$ days.

A's time $=x=4$ days
B's time $=y=16$ days
By the short trick approach:
$=\sqrt{4 \times 16}=\sqrt{64}=8$ days.
Hence, option D is correct.
3. To solve this question, we can apply a short trick approach;

If A can do a piece of work in x days and B can do it in y days then A and B working together will do the same work in work in
$\left(\frac{x y}{x+y}\right)$ days.
A's time $=x=20$ days
B's time $=y=15$ days
By the short trick approach:
$A+B$ can do the work in $\frac{20 \times 15}{20+15}$ days
$=\frac{300}{35}=\frac{60}{7}=8 \frac{4}{7}$ days
Hence, option C is correct.
4. To solve this question, we can apply a short trick approach;

If A is ' n ' times as fast (or slow) as B, and is therefore able to finish a work in ' D ' days less (or more) than B, then the time in which they can do it working together is given by
$\left(\frac{D n}{n^{2}-1}\right)$ days
Given:
Ashokan's days less then Nitin = D $=40$ days
Ashokan is 3 times as fast as Nitin $=\mathrm{n}=3$.
By the short trick approach:
we have the Required answer
$=\frac{40 \times 3}{3^{2}-1}=\frac{40 \times 3}{8}=15$ days
Hence, option A is correct.
5. To solve this question, we can apply a short trick approach;

If A can do a piece of work in x days and B can do it in y days then A and B working together will do the same work in

$$
\left(\frac{x y}{x+y}\right) \text { days. }
$$

A's time $=x=4$ days
B's time $=y=6$ days
By short trick approach:
$A+B$ can do the work in $\frac{4 \times 6}{4+6}$ days
$=\frac{24}{10}=2 \frac{2}{5}$ days
Hence, option C is correct.
6. Kindly refer to the video for short-trick approach or go through the solution given below.

Ratio of their efficiency
$=100: 160=5: 8$
\therefore Ratio of time taken $=8: 5$
\therefore Time taken by B
$=12 \times \frac{5}{8}=\frac{15}{2}=7 \frac{1}{2}$ days
Hence, option B is correct.
7. To solve this question, we can apply a short trick approach;

If A and B can do a work in x and y days respectively, and B leaves the work after doing for ' a ' days then A does the remaining work in
$\left[\frac{(y-a) x}{y}\right]$ days
Given:
Time taken by $\mathrm{A}=\mathrm{x}=20$ days.
Time taken by $B=y=12$ days
Leaving time of work by $\mathrm{B}=\mathrm{a}=9$ days
By the short trick approach,
A does the remaining work
$=\left[\frac{(12-9) 20}{12}\right]$ days
$=\frac{20}{4}=5$ days
Hence, option A is correct.
8. To solve this question, we can apply a short trick approach;

If A and B can do a piece of work in x days, B and C in y days, C and A in z days, then ($A+B+C$) working together will do the same work in
$\left[\frac{2 x y z}{x y+y z+z x}\right]$ days

Given:

A and B together finish a piece work $=x=10$ days
B and C together finish a piece work $=y=6$ days
C and A together finish a piece work $=\mathrm{z}=12$ days
By the short trick approach:
A, B and C can do the work in
$=\frac{2 \times 10 \times 6 \times 12}{10 \times 6+6 \times 12+12 \times 10}$ days
After taking 6 as a common term we get,
$=\frac{2 \times 10 \times 12}{10+12+20}$ days

After taking 2 as a common term we get,
$=\frac{120}{5+6+10}$ days $=\frac{120}{21}=\frac{40}{7}=5 \frac{5}{7}$ days

Hence, option C is correct.
9. $M e n=m ;$ Boys = b .

From the given information,
$(2 m+4 b) \times 10 \equiv(4 m+5 b) \times 6$
$\Rightarrow 20 \mathrm{~m}+40 \mathrm{~b} \equiv 24 \mathrm{~m}+30 \mathrm{~b}$
$\Rightarrow 4 \mathrm{~m} \equiv 10 \mathrm{~b}$
$\Rightarrow 2 \mathrm{~m} \equiv 5 \mathrm{~b}$
$\therefore 5 b=2 \times 40$
$\Rightarrow 1 \mathrm{~b}=\frac{2 \times 40}{5}=16$
\therefore Required ratio $=40: 16=5: 2$
Hence, option B is correct.
10. To solve this question, we can apply a short trick approach;

If A and B can do a piece of work in x days, B and C in y days, C and A in z days, then $(A+B+C)$ working together will do the same work in

$$
\left[\frac{2 x y z}{x y+y z+z x}\right] \text { days }
$$

Given:
A and B together finish a piece work $=x=20$ days
B and C together finish a piece work $=y=10$ days
C and A together finish a piece work $=\mathrm{z}=12$ days
By the short trick approach:
A, B and C can do the work in
$=\frac{2 \times 20 \times 10 \times 12}{20 \times 10+10 \times 12+12 \times 20}$ days

After taking 40 as a common term we get,
$=\frac{10 \times 12}{5+3+6}$ days $=\frac{120}{14}=8 \frac{4}{7}$ days

Hence, option C is correct.

12 Month Plan

2017-18 All Test Series
@ Just

$$
\begin{aligned}
& \text { ₹ 399/- } \\
& 300+\text { फुल लेन्थ टेस्ट }
\end{aligned}
$$ अभी जुड़ें

