-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Time and Distance Questions for CDS, CLAT \& SSC Exams.

Time and distance Quiz 3
Directions: Study the following Questions carefully and choose the right answer:

1. A thief is spotted by a policeman from a distance of 100 m . When the policeman starts the chase, the thief also starts running. If the speed of the thief be $8 \mathrm{~km} / \mathrm{hr}$ and that of the policeman $10 \mathrm{~km} / \mathrm{hr}$. How far the thief will have run before he is overtaken?
A. 100 m
B. 150 m
C. 200 m
D. 400 m
2. I walk a certain distance and ride back taking a total time of 37 minutes. I could walk both ways in 55 minutes. How long would it take me to ride both ways?
A. 5 min .
B. 10 min .
C. 13 min .
D. 19 min .
3. A motor-cycle covers 40 km with a speed of $20 \mathrm{~km} / \mathrm{hr}$. find the speed of the motor-cycle for the next 40 km journey so that the average speed of the whole journey will be $30 \mathrm{~km} / \mathrm{hr}$.
A. $70 \mathrm{~km} / \mathrm{hr}$
B. $52.5 \mathrm{~km} / \mathrm{hr}$
C. $60 \mathrm{~km} / \mathrm{hr}$
D. $60.5 \mathrm{~km} / \mathrm{hr}$
4. A man rides at the rate of $18 \mathrm{~km} / \mathrm{hr}$, but stops for 6 minutes to change horses at the end of every 7th km . The time that he will take to cover a distance of 90 km is
A. 6 hrs
B. 6 hrs. 12 min .
C. 6 hrs. 18 min .
D. 6 hrs .24 min .
5. Walking at $3 \mathrm{~km} / \mathrm{hr}$. Pintu reaches his school 5 minutes late. If he walks at 4 km per hour he will be 5 minutes early. The distance of Pintu's from his house is
A. $1 \frac{1}{2} \mathrm{~km}$
B. 2 km
C. $2 \frac{1}{2} \mathrm{~km}$
D. 5 km
6. A car driver, driving in a fog, passes a pedestrian who was walking at the rate of $2 \mathrm{~km} / \mathrm{h}$ in the same direction. The pedestrian could see the car for 6 min and it was visible to him up to a distance of 0.6 km . What was the speed of the car?
A. $15 \mathrm{~km} / \mathrm{hr}$
B. $30 \mathrm{~km} / \mathrm{hr}$
C. $20 \mathrm{~km} / \mathrm{hr}$
D. $8 \mathrm{~km} / \mathrm{hr}$
7. A thief is noticed by a police man from a distance of 200 m . The thief starts running and the policeman chases him. The thief and the policeman run at the rate of 10 km and 11 km per hour respectively. The distance (in metres) between the, after 6 minutes is
A. 190
B. 200
C. 100
D. 150
8. Alok walks to a viewpoint and returns to the starting point by his car and thus takes a total time of 6 hrs 45 min . He would have gained 2 hrs by driving both ways. How long would it have taken for him to walk both ways?
A. 7 hrs 45 min
B. 8 hrs 45 min
C. 5 hrs 30 min
D. None of these
9. Walking $6 / 7$ th of his usual speed a man gets late by 12 mins. The usual time taken by him to cover that distance is :
A. 1 hour
B. 1 hour 12 minutes
C. 1 hour 15 minutes
D. 1 hour 20 minutes
10. A car travels from P to Q at a constant speed. If its speed were increased by $10 \mathrm{~km} / \mathrm{hr}$, it would have been taken one hour lesser to cover the distance. It would have taken further 45 minutes lesser if the speed were further increased by $10 \mathrm{~km} / \mathrm{hr}$. The distance between the two cities is
A. 540 km
B. 420 km
C. 600 km
D. 620 km

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	D	C	B	B	D	C	B	B	B

Explanations:

1. Relative speed of policeman $=(10-8) \mathrm{km} / \mathrm{hr}=2 \mathrm{~km} / \mathrm{hr}$.

Time $=\frac{\text { Distance }}{\text { Relative speed }}$
Time taken by policeman to cover 100 m
$=\left(\frac{100}{1000} \times \frac{1}{2}\right) \mathrm{hr}=\frac{1}{20} \mathrm{hr}$.
In $\frac{1}{20} \mathrm{hrs}$, the thief covers a distance of
$\left(8 \times \frac{1}{20}\right) \mathrm{km}=\frac{2}{5} \mathrm{~km}=400 \mathrm{~m}$.
Hence, option D is correct.
2. Let the distance be x, then,
(Time taken to walk $x \mathrm{~km}$) $+($ Time taken to ride xm$)=37 \mathrm{~min}$.
\Rightarrow (Time taken to walk $2 x \mathrm{~km})+($ Time taken to ride $2 x \mathrm{~km})=74 \mathrm{~min}$.
But, time taken to walk $2 x \mathrm{~km}=55 \mathrm{~min}$.
So, Time to ride $2 x \mathrm{~km}=(74-55) \mathrm{min} \Rightarrow 19 \mathrm{~min}$.
Hence, option D is correct.
3. To solve this question, we can apply a short trick approach;

If a certain distance is covered at $x \mathrm{~km} / \mathrm{hr}$ and the same distance is covered at $\mathrm{y} \mathrm{km} / \mathrm{hr}$ then the average speed during the whole journey
$=\frac{2 x y}{x+y} \mathrm{~km} / \mathrm{hr}$.
Given,
Average speed of whole journey $=30 \mathrm{~km} / \mathrm{hr}$
$x=$ speed of first $40 \mathrm{~km}=20 \mathrm{~km} / \mathrm{hr}$
$\Rightarrow 30=\frac{2 \times 20 \times y}{20+y}$
$\Rightarrow 600+30 y=40 y \Rightarrow 10 y=600$
$\Rightarrow \mathrm{y}=\frac{600}{10}=60 \mathrm{~km} / \mathrm{hr}$.
Hence, option C is correct.
4. To solve this question, we can apply a short trick approach; $\frac{\text { Distance to be covered }}{\text { Speed }}+$ No. of stoppages \times Time for each rest

Given,

Number of stoppages
$=\frac{90}{7}=12.8$,
it means there is 12 stoppages.
Distance to be covered $=90 \mathrm{~km}$, Speed $=18$,
Time for each stoppage $=6 \mathrm{mins}$.
By the short trick approach, we get
$=\left(\frac{90}{18}\right)+12 \times 6$
$=5 \mathrm{hrs}+72 \mathrm{mins}$
Convert mins to hours then,
$=6 \mathrm{hrs} 12 \mathrm{mins}$.

Hence, option B is correct.

5. To solve this question, we can apply a short trick approach;
$\frac{\text { Product of two speeds }}{\text { Difference of two speeds }} \times$ Difference between arrival times
Given,
Speed $_{1}=3 \mathrm{~km} / \mathrm{hr}$, Speed $_{2}=4 \mathrm{~km} / \mathrm{hr}$
Time $_{1}=5$ mins late, Time $_{2}=5 \mathrm{~min}$ early
Reqd. Distance
$=\frac{3 \times 4}{4-3} \times \frac{5+5}{60}=\frac{12}{1} \times \frac{10}{60}=2 \mathrm{~km}$
Hence, option B is correct.

6. Method 1:

To solve this question, we can apply a short trick approach;
speed of the car $=\left(x+\frac{d}{t}\right) k m / h r$.
Given,
Where $\mathrm{x} \Rightarrow$ the speed of the $\mathrm{man}=2 \mathrm{~km} / \mathrm{hr}$
Where $t \Rightarrow$ the time duration $=6 \mathrm{~min}$
$=\frac{6}{60}=\frac{1}{10}$ hours.

Where $\mathrm{d} \Rightarrow$ the visible distance $=0.6 \mathrm{~km}$
By the short trick approach, we get
$=\left(2+\frac{0.6}{1 / 10}\right) \mathrm{km} / \mathrm{hr}$
$=2+(0.6 \times 10)=2+6=8 \mathrm{~km} / \mathrm{hr}$.

Method 2:

In 6 minutes, the car goes ahead by 0.6 km .
Hence, the relative speed of the car with respect to the pedestrian $=6 \mathrm{kmph}$
= Speed of car - Speed of pedestrian
We know that if two objects move in same direction at different speeds and if speed of 1st object $=x \mathrm{~km} / \mathrm{hr}$ and speed of 2nd object $=y \mathrm{~km} / \mathrm{hr}$, their relative speed $=(x-y) \mathrm{km} / \mathrm{hr}$ [where $x>y$],
6 = Speed or car - 2
Therefore, speed of car $=6+2=8 \mathrm{kmph}$
Hence, option D is correct.
7. Relative speed of the thief and policeman $=(11-10) \mathrm{km} / \mathrm{hr}=1 \mathrm{~km} / \mathrm{hr}$

Distance covered in 6 minutes $=$ Speed \times Time $=\left(\frac{1}{60 \mathrm{~min}} \times 6 \mathrm{~min}\right) \mathrm{km}=\frac{1}{10} \mathrm{~km}=100 \mathrm{~m}$.

Hence, option C is correct.
8. To solve this question, we can apply a short trick approach

Both ways driving = One way walking and one way driving time + gain in time
Given,
Walking time + driving time $=6$ hours 45 min
2 sides driving $=6 \mathrm{hrs} 45 \mathrm{~min}+2 \mathrm{hrs}=8 \mathrm{hrs} 45 \mathrm{~min}$.
Hence, option B is correct.
9. Method I: To solve this question, we can apply a short trick approach

$$
\text { Required time }=\left[\frac{\text { Change in time }}{\left(\frac{b}{a}-1\right)}\right] \text { hrs. }
$$

Given,

Speed $=\frac{a}{b}=\frac{6}{7}$; so, $\frac{b}{a}=\frac{7}{6}$

Change in time $=12$ minutes

By the short trick approach, we get
$=\left[\frac{12}{\left(\frac{7}{6}-1\right)}\right] \mathrm{hrs}$
$=\frac{12 \times 6}{7-6}=72$ minutes
= 1 hour 12 minutes.

Method II:

New Speed $=\frac{6}{7}$ of the usual speed
\therefore New time taken
$=\frac{7}{6}$ of the usual time
So, $\left(\frac{7}{6}\right.$ of the usual time $)-($ usual time $)=12 \mathrm{mins}$
$\Rightarrow \frac{1}{6}$ of the usual time $=12 \mathrm{~min}$
\Rightarrow Usual time $=72 \mathrm{mins}=1 \mathrm{hr} 12 \mathrm{mins}$.

Hence, option B is correct.
10. Traditional Method:

Let distance $=x \mathrm{~km}$ and usual rate $=y \mathrm{kmph}$. Then,
$\frac{x}{y}-\frac{x}{y+10}=1$ or $y(y+10)=10 x$ \qquad

Now, in the 2nd scenario with a further increase in speed the driver could have saved another $45 \mathrm{~min}=3 / 4 \mathrm{hr}$. Therefore, total time saved
$=1+\frac{3}{4}=\frac{7}{4} \mathrm{hrs}$.
Putting it in eq, we get
$\frac{x}{y}-\frac{x}{y+20}=\frac{7}{4}$ or $y(y+20)=\frac{80 x}{7}$
On dividing (i) by (ii), we get $\mathrm{y}=60$.
Substituting $y=60$ in (i), we get : $x=420 \mathrm{~km}$.

Smart Approach :

Product of Speeds
Product of speeds $=\frac{\text { Distance } \times \text { Diff. in Speeds }}{\text { Diff. in time }}$
Let initial speed be $\times \mathrm{km} / \mathrm{hr}$ and the distance between P and Q be D.
In the $1^{\text {st }}$ scenario,
Initial speed = x, Increased speed = (x+10), difference in speeds = 10 kmph and difference in time $=1 \mathrm{hr}$
$x(x+10)=\frac{D \times 10}{1}$
In the 2nd scenario,
Initial speed = x, Increased speed = (x+20), difference in speeds = 20 kmph and difference in time $=1 \mathrm{hr}+45$
$\min =1+\frac{3}{4}=\frac{7}{4} \mathrm{hrs}$.
$x(x+20)=\frac{D \times 20 \times 4}{7}$
Dividing Eq. (ii) by Eq.(i) , we get
$\frac{(x+20)}{(x+10)}=\frac{20 \times 4}{7} \times \frac{1}{10}$
$=\frac{8}{7}$
$\Rightarrow 140+7 x=80+8 x$
$\therefore \quad x=$ initial speed $=60 \mathrm{~km} / \mathrm{hr}$
Putting the value of x in eq. (i), we get
$60 \times 70=\mathrm{D} \times 10$
$\therefore \quad D=420 \mathrm{~km}$.
Hence, option B is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़
 ■ (3)

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-
 300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\checkmark बेजोड़ व्याख्या

