Presents

TestZone

India's least priced Test Series platform

12 Month Plan

2019-20 All Test Series
@ Just

₹ 499/-

300+ Full Length Tests

$$
\begin{aligned}
& \boxtimes \text { Brilliant Test Analysis } \\
& \boxtimes \text { Excellent Content } \\
& \boxed{\text { Unmatched Explanations }} \\
& \text { JOIN NOW }
\end{aligned}
$$

Surds and indices questions of CGL Tier 2, CGL Tier 1 and SSC 10+2

Surds and indices quiz 3

Direction: Study the following questions carefully and choose the right answer.

1. The number of prime factors in $6^{333} \times 7^{222} \times 8^{111}$
A. 1221
B. 1222
C. 1111
D. 1211
2. Simplify $\left(\frac{1}{64}\right)^{0}+(64)^{-\frac{1}{2}}+(-32)^{\frac{4}{5}}$
A. $17 \frac{1}{8}$
B. $7 \frac{1}{8}$
C. $7 \frac{1}{3}$
D. $17 \frac{1}{2}$
3. Simplify: $\left(\frac{256}{576}\right)^{\frac{1}{4}} \times\left(\frac{64}{27}\right)^{-\frac{1}{3}} \times\left(\frac{216}{8}\right)^{-1}$
A. $\frac{1}{3 \sqrt{16}}$
B. $\frac{1}{18 \sqrt{6}}$
C. $\frac{1}{2 \sqrt{6}}$
D. $\frac{1}{3 \sqrt{7}}$
4. Simplify the following $\left(\frac{\mathbf{a}^{4} b^{6}}{\mathbf{c}^{8}}\right)^{3} \times\left(\frac{\mathbf{b}^{8} \mathbf{c}^{4}}{\mathbf{a}^{-6}}\right)^{-2} \times\left(\frac{\mathbf{c}^{6} \mathbf{a}^{6}}{\mathbf{b}^{4}}\right)^{2}$
A. $\frac{a^{12}}{b^{6} \cdot c^{20}}$
B. $\frac{a^{6}}{b^{6} \cdot c^{22}}$
C. $\frac{a^{7}}{b^{6} \cdot c^{20}}$
D. None of these
5. $\left(\frac{216}{1}\right)^{-\frac{2}{3}} \div\left(\frac{27}{1}\right)^{-\frac{4}{3}}=$?
A. $4 / 9$
B. $9 / 4$
C. $9 / 2$
D. $3 / 2$
6. $\left(4^{3}\right)^{4} \div\left(4^{2}\right)^{3} \times\left(4^{5}\right)^{0}=?$
A. 23
B. 43
C. 46
D. 32
7. If m and n are whole numbers such that $m^{n}=121$, then $(m-1)^{n+1}=$?
A. 100
B. 1000
C. 10000
D. 10
8. If $x=(\sqrt{2}+1)^{-\frac{1}{3}}$ the value of $\left(x^{3}-\frac{1}{x^{3}}\right)$ is
A. 0
B. $-\sqrt{ } 2$
C. -2
D. $3 \sqrt{ } 2$
9. The value of $\frac{(243)^{\frac{n}{5}} \times 3^{2 n+1}}{9^{n} \times 3^{n-1}}$ is
A. 3
B. 9
C. 6
D. 12
10. The greatest among the numbers $3 \sqrt{2}, 3 \sqrt{7}, 6 \sqrt{5}, 2 \sqrt{20}$ is
A. $3 \sqrt{ } 2$
B. $3 \sqrt{ } 7$
C. 6 V 5
D. $2 \sqrt{ } 20$

Correct answers:

1	2	3	4	5	6	7	8	9	10
A	A	B	A	B	C	B	C	B	C

Explanations:

1). $(6)^{333} \times(7)^{222} \times(8)^{111}$
$\therefore(2 \times 3)^{333} \times(7)^{222} \times\left(2^{3}\right)^{111}$
$\therefore \quad 2^{333} \times 3^{333} \times 7^{222} \times 2^{333}$
$\therefore 2^{666} \times 3^{333} \times 7^{222}$
\therefore Number of prime factors
$=666+333+222=1221$.
Hence, option A is correct.
2). $\left(\frac{1}{64}\right)^{0}+(65)^{-\frac{1}{2}}+(-32)^{\frac{4}{5}}$
$=1+\left(8^{2}\right)^{-1 / 2}+(-1 \times 32)^{4 / 5}$
$=1+\frac{1}{8}+\left[\left(-1^{2}\right)^{2 / 5} \times\left(2^{5}\right)^{4 / 5}\right]$
$=1+\frac{1}{8}+\left[2^{4}\right]=17 \frac{1}{8}$.
Hence, option A is correct.
3). As $256=2^{8} ; 576=24^{2} ; 64=2^{6} ; 27=3^{3}$

$$
\left(\frac{256}{576}\right)^{1 / 4} \times\left(\frac{64}{27}\right)^{-1 / 3} \times\left(\frac{216}{8}\right)^{-1}
$$

$$
\begin{aligned}
& \left(\frac{2^{8}}{24^{2}}\right)^{1 / 4} \times\left(\frac{3^{3}}{2^{6}}\right)^{1 / 3} \times\left(\frac{8}{216}\right) \\
& =\frac{2^{2}}{\sqrt{24}} \times \frac{3}{4} \times \frac{1}{27}=\frac{1}{2 \sqrt{6} \times 9}=\frac{1}{18 \sqrt{6}}
\end{aligned}
$$

Hence, option B is correct.
4). $\left(\frac{a^{4} b^{6}}{c^{8}}\right)^{3} \times\left(\frac{b^{8} c^{4}}{a^{-6}}\right)^{-2} \times\left(\frac{c^{6} a^{6}}{b^{4}}\right)$
$=\left(\frac{a^{4 \times 3} b^{6 \times 3}}{c^{8 \times 3}}\right)$
$\times\left(\frac{b^{8 \times(-2)} c^{4 \times(-2)}}{a^{-6 \times(-2)}}\right)$
$\times\left(\frac{c^{6 \times 2} a^{6 \times 2}}{b^{4 \times 2}}\right)$
$=a^{12-12+12} b^{18-16-8} c^{-8+12-24}$
$=\frac{a^{12}}{b^{6} \cdot c^{20}}$

Hence, option A is correct.
5). Putting x for (?), we get

$$
\begin{aligned}
& \left(\frac{216}{1}\right)^{-2 / 3} \div\left(\frac{27}{1}\right)^{-4 / 3}=x \\
& x=\left(\frac{1}{6}\right)^{2} \div\left(\frac{1}{3}\right)^{4} \\
& =\frac{1}{36} \div \frac{1}{81}=\frac{1}{36} \times \frac{81}{1}
\end{aligned}
$$

$\Rightarrow x=\frac{81}{36}=\frac{9}{4}$

Hence, option B is correct.
6). Put x for (?), Since all base are equal to 4 , hence, put $a=4$
$\Rightarrow x=\left(a^{3}\right)^{4} \div\left(a^{2}\right)^{3} \times\left(a^{5}\right)^{0}$
$\left(\right.$ Since $\left.\left(a^{5}\right)^{0}=1\right)$
$\Rightarrow x=a^{12} \div a^{6} \times 1 \Rightarrow x=a^{12-6}$
(Since $a^{m} \div a^{n}=a^{m-n}$)
$\Rightarrow x=a^{6}=4^{6}$.

Hence, option C is correct.
7). Given that $\mathrm{m}^{\mathrm{n}}=121 \Rightarrow \mathrm{~m}^{\mathrm{n}}=(11)^{2}$

Hencem $\mathrm{m}=11$ and $\mathrm{n}=2$

Putting these values, we get
$(m-1)^{n+1}=(11-1)^{2+1}=(10)^{3}=1000$.

Hence, option B is correct.
8). If $x=(\sqrt{ } 2+1)^{-1 / 3}$
$\Rightarrow \mathrm{x}^{-3}=\mathrm{V} 2+1$
$\Rightarrow \frac{1}{\mathrm{x}^{3}}=\sqrt{2}+1$
and $x^{3}=\frac{1}{\sqrt{2}+1}=\frac{1(\sqrt{2}-1)}{1(\sqrt{2}+1) 1(\sqrt{2}-1)}=(\sqrt{2}-1)$
$\therefore \mathrm{x}^{3}-\frac{1}{\mathrm{x}^{3}}$
$=(\sqrt{2}-1)-(\sqrt{2}+1)$
$=\sqrt{2}-1-\sqrt{2}-1=-2$
Hence, option C is correct.
9). \quad Expression $=\frac{(243)^{\frac{n}{5}} \times 3^{2 n+1}}{9^{n} \times 3^{n-1}}$
$=\frac{\left(3^{5}\right)^{n / 5} \times 3^{2 n+1}}{9^{n} \times 3^{n-1}}=\frac{3^{n} \times 3^{2 n+1}}{3^{2 n} \times 3^{n-1}}$
$=\frac{3^{n} \times 3^{2 n+1}}{3^{2 n} \times 3^{n-1}}=\frac{3^{3 n+1}}{3^{3 n-1}}$
$=3^{3 n+1-3 n+1}=3^{2}=9$
All the formulas used in the above solution given below.
$\left[a^{m} \times a^{n}=a^{m+n} ; \quad a^{m} \div a^{n}=a^{m-n} ; \quad\left(a^{m}\right)^{n}=a^{m n}\right]$
Hence, option B is correct.
10). $3 . \sqrt{2}=3 \times 1.4=4.2$
$3 \sqrt{7}=3 \times 2.6=7.8$
$6 \sqrt{5}=6 \times 2.2=13.2$
$2 \sqrt{20}=2 \times 4.5=9$
Hence, the greatest number is $6 \sqrt{5}$.
Hence, option C is correct.

Join us on Telegram for more PDFs Click here

$-\dot{-1}$ - SmartKeeda

tug mis

TestZone

भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2019-20 All Test Series
@ Just

₹ $499 /-$

300 + फुल लेन्थ टेस्ट

```
- श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\(\checkmark\) बेजोड़ व्याख्या
```

