

Quadratic Equation Questions for SBI Clerk Mains, IBPS Clerk Mains, RBI Assistant Mains, LIC AAO, SBI PO Pre, IBPS PO Pre and RRB Scale I Pre Exams.

Quadratic Eqn. Quiz 26
Directions: In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer.
1.
I. $\frac{x^{2}}{\sqrt{ } 7+2 \sqrt{ } 2}-x=14 \sqrt{ } 2-8 \sqrt{ } 7$
II. $y \vee 14+\frac{35 \vee 2}{y}=7 \sqrt{ } 2+5 \vee 14$
A. if $x>y$
B. if $x \leq y$
C. if $x \geq y$
D. if $x<y$
E. if $x=y$ or relationship between x and y can't be established
2. I. $3 x^{3}-5 y^{3}=2$ V 729
II. $2 x^{3}+(332-1088) y^{3}+92=0$
A. if $x>y$
B. if $x \leq y$
C. if $x \geq y$
D. if $x<y$
E. if $x=y$ or relationship between x and y can't be established
3.
I. $\frac{-(\sqrt{ } 81-\sqrt{ } 25) x^{2}+60 x+2(\sqrt{ } 25+\sqrt{ } 16) x}{270}=1$
II. $y=\sqrt{18+0.5 y}$
A. if $x>y$
B. if $x \leq y$
C. if $x \geq y$
D. if $x<y$
E. if $x=y$ or relationship between x and y can't be established
4.
I. $x^{3 / 2}-\frac{81}{\sqrt{x}}=0$
II. $20 y^{2}-119 y+176=0$
A. if $x>y$
B. if $x \leq y$
C. if $x \geq y$
D. if $x<y$
E. if $\mathrm{x}=\mathrm{y}$ or relationship between x and y can't be established
5.

$$
\text { I. } 76 x^{2}+29 \sqrt{ } 19 x+52=0
$$

II. $35 y^{2}+8 y-3=0$
A. if $x>y$
B. if $x \leq y$
C. if $x \geq y$
D. if $x<y$
E. if $x=y$ or relationship between x and y can't be established
6. I. $4 x^{2}-(8+\sqrt{ } 10) x+2 \sqrt{ } 10=0$
II. $2 y^{2}-(4+3 \sqrt{ } 11) y+6 V 11=0$
A. if $x>y$
B. if $x \geq y$
C. if $x<y$
D. if $x \leq y$
E. if $x=y$ or relationship between x and y can't be established
7. I. $x^{3} \times 14=x^{2} \times 98$
II. $y^{1 / 3} \times 12=108 \div y^{2 / 3}$
A. if $x>y$
B. if $x \geq y$
C. if $x<y$
D. if $x \leq y$
E. if $x=y$ or relationship between x and y can't be established
8. I. $x^{2}-12 x+32=0$
II. $2 y^{2}-9 y+10=0$
A. if $x>y$
B. if $x \geq y$
C. if $x<y$
D. if $x \leq y$
E. if $x=y$ or relationship between x and y can't be established
9. I. $x^{2}+3 \sqrt{ } 2 x-80=0$
II. $y^{2}-5 \sqrt{ } 2 y-100=0$
A. if $x>y$
B. if $x \geq y$
C. if $x<y$
D. if $x \leq y$
E. if $x=y$ or relationship between x and y can't be established
10. I. $x^{2}-4 \sqrt{ } 3 x-36=0$
II. $y^{2}-5 V 2 y-72=0$
A. if $x>y$
B. if $x \geq y$
C. if $x<y$
D. if $x \leq y$
E. if $x=y$ or relationship between x and y can't be established

For more PDFs join us on Telegram

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
E	E	C	E	D	D	C	A	E	E

For more PDFs join us on Telegram

1.
I. $\frac{x^{2}}{\sqrt{7}+2 \sqrt{ } 2}-x=14 \sqrt{ } 2-8 \sqrt{ } 7$
$\Rightarrow x^{2}-(\mathrm{V} 7+2 \mathrm{~V} 2) \mathrm{x}=-2 \mathrm{~V} 14$
$\Rightarrow(x-\sqrt{ } 7)(x-2 \sqrt{ } 2)=0$
$\Rightarrow x=\vee 7,2 \vee 2$
II. $y \mathrm{v} 14+\frac{35 \mathrm{~V} 2}{\mathrm{y}}=7 \mathrm{~V} 2+5 \mathrm{~V} 14$

Taking V14 common both sides we get,
$\Rightarrow y+\frac{5 \mathrm{~V} 7}{\mathrm{y}}=\mathrm{V} 7+5$
$\Rightarrow \mathrm{y}^{2}-(\mathrm{v} 7+5) \mathrm{y}+5 \mathrm{v} 7=0$
$\Rightarrow(y-V 7)(y-5)=0$
$\Rightarrow y=\sqrt{ } 7,5$
When $x=\vee 7$ and $y=\vee 7, x=y$
When $x=V 7$ and $y=5, x<y$
When $x=2 \sqrt{ } 2$ and $y=\sqrt{ } 7, x>y$
So, relation between x and y can't be established.
Hence, option (E) is correct.
2. $3 x^{3}-5 y^{3}=2 \sqrt{ } 729$
$\Rightarrow 3 x^{3}-5 y^{3}=54$
$\Rightarrow 5 y^{3}=3 x^{3}-54$
Now, $2 x^{3}+\left(33^{2}-1088\right) y^{3}+9^{2}=0$
$\Rightarrow 2 x^{3}+y^{3}+81=0$
Multiplying by 5 both sides we get,
$\Rightarrow 10 x^{3}+5 y^{3}=-405$ \qquad
Put the value from eq. (i) in eq. (ii)
$\Rightarrow 10 x^{3}+3 x^{3}-54=-405$
$\Rightarrow x^{3}=-27 \Rightarrow x=-3$
Put the value of x in eq. (i)
$\Rightarrow 5 y^{3}=-81-54 \Rightarrow y=-3$
So, $x=y$
Hence, option (E) is correct.
3.
I. $\frac{-(\sqrt{ } 81-\sqrt{ } 25) x^{2}+60 x+2(\sqrt{ } 25+\sqrt{ } 16) x}{270}=1$
$\Rightarrow \frac{-4 x^{2}+60 x+18 x}{270}=1$
$\Rightarrow \frac{2 x^{2}-30 x-9 x}{2}=-\frac{135}{2}$
$\Rightarrow(x-15)\left(x-\frac{9}{2}\right)=0$
$\Rightarrow x=15, \frac{9}{2}$
II. $y=\sqrt{18+0.5 y}$
$\Rightarrow 10 y^{2}-5 y=180$
$\Rightarrow 2 \mathrm{y}^{2}-\mathrm{y}-36=0$
$\Rightarrow\left(y-\frac{9}{2}\right)(y+4)=0$
$\Rightarrow \mathrm{y}=\frac{9}{2},-4$
So, $x \geq y$
Hence, option (C) is correct.
4.
I. $x^{3 / 2}-\frac{81}{\sqrt{x}}=0$
or, $\frac{\left(x^{3 / 2} \times \sqrt{x}-81\right)}{\sqrt{x}}=0$
$x^{3 / 2} \times x^{1 / 2}-81=0$
$x^{2}=81$
$x= \pm 9$
II. $20 y^{2}-119 y+176=0$
$20 y^{2}-64 y-55 y+176=0$
$4 y(5 y-16)-11(5 y-16)=0$
$(5 y-16)(4 y-11)=0$
$y=\frac{16}{5}, \frac{11}{4}$
While comparing the values of x and y, both root values of y lies between the root values of x. Hence, option E is correct.
5. I. $76 x^{2}+29 \sqrt{ } 19 x+52=0$
$76 x^{2}+13 \sqrt{ } 19 x+16 \sqrt{ } 19 x+52=0$
$\vee 19 x(4 \vee 19 x+13)+4(4 \vee 19 x+13)=0$
$(4 \sqrt{ } 19 x+13)(\sqrt{ } 19 x+4)=0$
$x=-13 / 4 \sqrt{ } 19,-4 / \sqrt{ } 19$
II. $35 y^{2}+8 y-3=0$
$35 y^{2}+15 y-7 y-3=0$
$5 y(7 y+3)-1(7 y+3)=0$
$(5 y-1)(7 y+3)=0$
$y=1 / 5,-3 / 7$
$x<y$

Hence, option D is correct.
6. I. $4 x^{2}-(8+\sqrt{ } 10) x+2 \sqrt{ } 10=0$
$4 x^{2}-8 x-\sqrt{ } 10 x+2 \sqrt{ } 10=0$
$4 x(x-2)-\sqrt{ } 10(x-2)=0$
$(4 x-\sqrt{ } 10)(x-2)=0$
$x=2, \frac{\mathrm{~V} 10}{4}$
II. $2 \mathrm{y}^{2}-(4+3 \mathrm{~V} 11) \mathrm{y}+6 \mathrm{~V} 11=0$
$=2 \mathrm{y}^{2}-4 \mathrm{y}-3 \mathrm{~V} 11 \mathrm{y}+6 \mathrm{~V} 11=0$
$=2 y(y-2)-3 \mathrm{~V} 11(y-2)=0$
$=(2 y-3 \sqrt{ } 11)(y-2)=0$
$y=2, \frac{3 \sqrt{ } 11}{2}$

While comparing the root the root values of x and y, we find that the root values of y is greater than equal to x.

Hence, the option D is correct.
7. I. $x^{3} \times 14=x^{2} \times 98$
or, $\frac{x^{3}}{x^{2}}=\frac{98}{14}$
$\therefore \mathrm{x}=7$
II. $y^{1 / 3} \times 12=108 \div y^{2 / 3}$
or, $\mathrm{y}^{1 / 3} \times \mathrm{y}^{2 / 3}=\frac{108}{12}$
or, $\mathrm{y}=9$

Clearly, $\mathrm{x}<\mathrm{y}$
Hence, the option C is correct.
8. I. $x^{2}-12 x+32=0$
or, $x^{2}-8 x-4 x+32=0$
or, $x(x-8)-4(x-8)=0$
or, $(x-4)(x-8)=0$
$\therefore \mathrm{x}=4,8$
II. $2 y^{2}-9 y+10=0$
or, $2 y^{2}-4 y-5 y+10=0$
or, $2 y(y-2)-5(y-2)=0$
or, $(2 y-5)(y-2)=0$
$\therefore y=\frac{5}{2}, 2$
Clearly, $x>y$.
Hence, the option A is correct.
9. Step I: Find the square of the root part of middle cofficient of the given equation:
$x^{2}+3 \sqrt{2} x-80=0$
$\Rightarrow(\sqrt{2})^{2}=2$

Step 2: Divide the constant part of the equation by the number wet at step
$\Rightarrow \frac{80}{2}=40$

Step 3: Find such factors of 40 that can give us the integer value of the middle cofficient; +3

Two such factors are +8 \& -5

Step 4: The equation, therefore, can be written as
$x^{2}+8 \sqrt{2}-5 \sqrt{2}-80=0$

Step 5: Value of x, hence will be
either $-8 \sqrt{2}$ or $+5 \sqrt{2}$

Similarly, value of y will be
either $+10 \sqrt{2}$ and $-5 \sqrt{2}$.
Now, in approximation we can assume the value of $\sqrt{2}$ to be 1 .
Applying the comparison rule,
$-8<+5$
$-9<-5$
$-5<5$
$5>-3$

Therefore, the relation between x and y can't be determined.
Hence option E is correct.

For more PDFs join us on Telegram

10. Step 1: Find the square of the root part of middle cofficient of the given equation:
$x^{2}-4 \sqrt{ } 3 x-36=0$
$\Rightarrow(\mathrm{V} 3)^{2}=3$

Step 2: Divide the constant part of the equation by the number we get at step 1:
$\Rightarrow \frac{36}{3}=12$

Step 3: Find such factors of 12 that can give us the integer value of the middle cofficient; - 4

Two such factors are $-6 \&+2$.

Step 4: The equation, therefore, can be written as
$x^{2}-6 \sqrt{ } 3 x+2 \sqrt{ } 3 x-36=0$

Step 5: Value of x, hence will be
either $+6 \sqrt{ } 3$ or $-2 \sqrt{ } 3$

Similarly, value of y will be

Either $+9 \sqrt{ } 2$ or $-4 \sqrt{ } 2$

Now, in approximation we can assume the values of $\sqrt{ } 2$ and $\sqrt{ } 3$ to be 1 .
Applying the comparison rule, we find that $-2 \sqrt{ } 2$ (one of the values of y) is lying between $+6 \sqrt{ } 3$ and $2 \sqrt{ } 3$ (which are roots of x).

Therefore, the relation between x and y can't be determined.

Hence option E is correct.

> For more PDFs join us on Telegram

-' Smarkeeda

Presents

TestZone

India's least priced Test Series platform

ALL BANK EXAMS

2020-2021 Test Series

@ Just
₹ 599/-

300+ Full Length Tests

$\boxed{\square}$ Brilliant Test Analysis
$\boxed{\square}$ Excellent Content
\checkmark Unmatched Explanations

JOIN NOW

