-' $^{-}$SmartKeeda The Question Bank
 Presents

 TestZone

 TestZone
 India's least priced Test Series platform

∇

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Quadrilateral \& Polygon Questions for CDS, SSC \& Railways Exams

Quadrilateral \& Polygon Quiz 4
Directions: Kindly study the following questions carefully and choose the right answer:

1. Measure of each interior angle of a regular polygon can never be :
A. 150°
B. 105°
C. 108°
D. 144°
2. The sum of all interior angles of a regular polygon is twice the sum of all its exterior angles. The number of sides of the polygon is
A. 10
B. 8
C. 12
D. 6
3. The ratio between the number of sides of two regular polygons is $\mathbf{1 : 2}$ and the ratio between their interior angles is $2: 3$. The number of sides of these polygons is respectively
A. 6,12
B. 5, 10
C. 4,8
D. 7,14
4. There are two regular polygons with number of sides equal to ($n-1$) and ($n+$ 2). Their exterior angles differ by 6°. The value of n is
A. 14
B. 12
C. 13
D. 11
5. If each interior angle of a regular polygon is 150°, the number of sides of the polygon is
A. 8
B. 10
C. 15
D. None of these
6. The sum of interior angles of a regular polygon is 1440°. The number of sides of the polygon is
A. 10
B. 12
C. 6
D. 8
7. Among the angles $30^{\circ}, 36^{\circ}, 45^{\circ}, 50^{\circ}$ one angle cannot be an exterior angle of a regular polygon. The angle is
A. 30°
B. 36°
C. 45°
D. 50°
8. If the sum of interior angles of a regular polygon is equal to two times the sum of exterior angles of that polygon, then the number of sides of that polygon is
A. 5
B. 6
C. 7
D. 8
9. An interior angle of a regular polygon is 5 times its exterior angle. Then the number of sides of the polygon is
A. 14
B. 16
C. 12
D. 18
10. In a regular polygon if one of its internal angle is greater than the external angle by 132°, then the number of sides of the polygon is
A. 14
B. 12
C. 15
D. 16

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	D	C	C	D	A	D	B	C	C

Explanations:

1.

Check through the options, each interior angle $=\frac{180^{\circ}-360^{\circ}}{n}$
If measure of each angle $=105^{\circ}$, then
$180^{\circ}-\frac{360^{\circ}}{n}=105^{\circ}$
$180^{\circ} \times \mathrm{n}-360^{\circ}=105^{\circ} \times \mathrm{n}$
$75^{\circ} \times \mathrm{n}=360^{\circ}$
$\mathrm{n}=\frac{24}{5}$
which is impossible
Hence, option B is correct.
2.

Let the number of sides of a polygon be n. Then,
Sum of interior angles $=(2 n-4) \times 90^{\circ}$
Sum of exterior angles $=360^{\circ}$
$\therefore(2 n-4) \times 90^{\circ}=2 \times 360^{\circ}$
$2 \mathrm{n}-4=8 \quad \Rightarrow \quad 2 \mathrm{n}=12$
$\mathrm{n}=6$
Hence, option D is correct.
3.

Let the number of sides of two regular polygons be x and 2 x respectively. Then, $\left(180^{\circ}-\frac{360^{\circ}}{x}\right):\left(180^{\circ}-\frac{360^{\circ}}{2 x}\right)=2: 3$
$\frac{180^{\circ}(x-2)}{x} \times \frac{x}{180^{\circ}(x-1)}=\frac{2}{3}$
$3 x-6=2 x-2$
$x=4$
\therefore Number of sides $=x=4$ and $2 x=2 \times 4=8$
Hence, option C is correct.
4.
$\frac{360^{\circ}}{n-1}-\frac{360^{\circ}}{n+2}=6^{\circ}$
$360^{\circ}\left(\frac{n+2-n+1}{(n-1)(n+2)}\right)=6^{\circ}$
$(n-1)(n+2)=180$
$n^{2}+n-2=180$
$n^{2}+n-182=0$
$n^{2}+14 n-13 n-182=0$
$n(n+14)-13(n+14)=0$
$(n-13)(n+14)=0$
$\mathrm{n}=13,-14 \quad[\because \mathrm{n} \neq-14]$
Hence, optino C is correct.

5.

Let the number of sides of a regular polygon be n. Then,
$180^{\circ}-\frac{360^{\circ}}{n}=150^{\circ}$
$180^{\circ} \times \mathrm{n}-360^{\circ}=150^{\circ} \times \mathrm{n}$
$30^{\circ} \times \mathrm{n}=360^{\circ}$
$\mathrm{n}=12$
Hence, option D is correct.
6.

If the number of sides of a regular polygon be n. Then,
Sum of interior angles $=1440^{\circ}$
$(2 n-4) \times 90^{\circ}=1440^{\circ}$
$2 n-4=16$
$2 n=20$
$\mathrm{n}=10$
Hence, option A is correct.

7.

Sum of exterior angles of a regular polygon $=360^{\circ}$
But, $\frac{360^{\circ}}{50^{\circ}}=7.2 \neq$ a whole number
Clearly, the angle 50° doesn't completely divide 360° which means we can't get a total of 360° by adding 50° to n times.

On the other hand the rest of the angles satisfy the condition.
For instance:
$30^{\circ}+30^{\circ}+\ldots \ldots+12$ times $=360^{\circ}$
$36^{\circ}+36^{\circ}+\ldots \ldots+10$ times $=360^{\circ}$
$45^{\circ}+45^{\circ}+\ldots \ldots+8$ times $=360^{\circ}$
Therefore, it's clear that 50° can't be an angle of a regular polygon.
Hence, option D is correct.
8.

Let the number of sides of a regular polygon is n. Then,
Sum of interior angles $=(2 n-4) \times 90^{\circ}$
Sum of exterior angles $=360^{\circ}$
$\therefore(2 \mathrm{n}-4) \times 90^{\circ}=2 \times 360^{\circ}$
$2 n-4=8$
$2 n=12$
$\mathrm{n}=6$
Hence, option B is correct.
9.

Let the number of sides of a regular polygon be n .
Then,
$180^{\circ}-\frac{360^{\circ}}{n}=5 \times \frac{360^{\circ}}{n}$
$180^{\circ} \times \mathrm{n}-360^{\circ}=1800^{\circ}$
$180^{\circ} \times \mathrm{n}=2160^{\circ}$
$\mathrm{n}=12$

Hence, option C is correct.
10.

Let number of sides of a regular polygon $=\mathrm{n}$
$\therefore 180^{\circ}-\frac{360^{\circ}}{n}-\frac{360^{\circ}}{n}=132^{\circ}$
$180^{\circ} \times \mathrm{n}-720^{\circ}=132^{\circ} \times \mathrm{n}$
$48^{\circ} \times \mathrm{n}=720^{\circ}$
$\mathrm{n}=15$
Hence, option C is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

