-' $^{-}$SmartKeeda The Question Bank
 Presents

 TestZone

 TestZone
 India's least priced Test Series platform

∇

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Quadrilateral \& Polygon Questions for CDS, SSC \& Railways Exams

Quadrilateral \& Polygon Quiz 3
Directions: Kindly study the following questions carefully and choose the right answer:

1. In a cyclic quadrilateral $\angle A+\angle C=\angle B+\angle D=$?

A. 270°
B. 360°
C. 90°
D. 180°
2. If $A B C D$ be a cyclic quadrilateral in which $\angle A=4 x^{\circ}, \angle B=7 x^{\circ}, \angle C=5 y^{\circ}, \angle D=y^{\circ}$, then $x: y$ is
A. $3: 4$
B. $4: 3$
C. $5: 4$
D. $4: 5$
3. A quadrilateral $A B C D$ circumscribes a circle and $A B=6 \mathrm{~cm}, C D=5 \mathrm{~cm}$ and $A D=$ 7 cm . The length of side $B C$ is
A. 4 cm
B. 5 cm
C. 3 cm
D. 6 cm
4. $A B C D$ is a cyclic quadrilateral and $A D$ is a diameter. If $\angle B A C=55^{\circ}$ then value of $\angle A D C$ is
A. 55°
B. 35°
C. 145°
D. 125°
5. The difference between the exterior and interior angles at a vertex of a regular polygon is 150°. The number of sides of the polygon is
A. 10
B. 15
C. 24
D. 30
6. Each interior angle of a regular polygon is 144°. The number of sides of the polygon is
A. 8
B. 9
C. 10
D. 11
7. If the sum of the interior angles of a regular polygon be 1080°, the number of sides of the polygon is
A. 6
B. 8
C. 10
D. 12
8. The number of sides in two regular polygons are in the ratio 5:4 and the difference between each interior angle of the polygons is 6°. Then the number of sides are
A. 15,12
B. 5, 4
C. 10,8
D. 20,16
9. Each interior angle of a regular polygon is two times its external angle. Then the number of sides of the polygon is :
A. 8
B. 6
C. 5
D. 7
10. Ratio of the number of sides of two regular polygons is $5: 6$ and the ratio of their each interior angle is $24: 25$. Then the number of sides of these two polygons are
A. 20,24
B. 15,18
C. 10,12
D. 5,6

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	B	A	C	C	C	B	A	B	C

Explanations:

1.

The sum of opposite angles of a concyclic quadrilateral $=180^{\circ}$
$\therefore \angle A+\angle C=\angle B+\angle D=180^{\circ}$

Hence, option D is correct.

2.

The sum of opposite angles of a concyclic quadrilateral is 180°.
$\therefore \angle A+\angle C=180^{\circ}$
$4 x+5 y=180^{\circ}$
$\angle B+\angle D=180^{\circ}$
$7 x+y=180^{\circ}$

By equation (ii) $\times 5-$ (i), we get
$31 x=720 \Rightarrow x=\frac{720}{31}$

From equation (ii),
$7 x+y=180^{\circ} \Rightarrow 7 \times \frac{720}{31}+y=180^{\circ}$
$y=180^{\circ}-\frac{5040}{31}=\frac{540}{31}$
$\therefore \mathrm{x}: \mathrm{y}=\frac{720}{31}: \frac{540}{31}=4: 3$
Hence, option B is correct.
3.

We know tangents drawn to a circle from same external point are equal
$A M=A Q=x$ (let)
$\therefore \mathrm{MB}=6-\mathrm{x}=\mathrm{BN}$

$Q D=7-x=D P$
$P C=y($ let $)=C N$
Now, $C D=D P+P C=5$
$\Rightarrow 7-x+y=5$
$\Rightarrow \mathrm{y}-\mathrm{x}=-2$
$B C=C N+B N$
$=y+6-x=y-x+6=-2+6=4$
Hence, option A is correct.
4.
$\angle B A C=55^{\circ}$
$\angle A C B=90^{\circ}$
[\because Angle of semi-circle]
In $\triangle A B C$, we know that

$\angle A B C=180^{\circ}-90^{\circ}-55^{\circ}=35^{\circ}$
$\therefore \angle A B C+\angle A D C=180^{\circ}$
$\angle A D C=180^{\circ}-\angle A B C=180^{\circ}-35^{\circ}=145^{\circ}$
Hence, option C is correcrt.
5.

Let the number of sides of a polygon be n. Then,
$180^{\circ}-\frac{360^{\circ}}{n}-\frac{360^{\circ}}{n}=150^{\circ}$
$180^{\circ} \times n-720^{\circ}=150^{\circ} \times n$
$30^{\circ} \times n=720^{\circ}$
$\mathrm{n}=24$

Hence, option C is correct.
6.

If the number of sides of a polygon be n. Then,
$180^{\circ}-\frac{360^{\circ}}{n}=144^{\circ}$
$180^{\circ} \times n-360^{\circ}=144^{\circ} \times n$
$36^{\circ} \times n=360^{\circ}$
$\mathrm{n}=10$

Hence, option C is correct.
7.

We know that,
Sum of the interior angles of a regular polygon of n sides $=(2 n-4) \times 90^{\circ}$
$\therefore(2 n-4) \times 90^{\circ}=1080^{\circ}$
$2 n-4=12$
$2 n=16 \Rightarrow n=8$

Hence, option B is correct.
8.

Let the number of sides be $5 x$ and $4 x$ respectively.
$\therefore\left(180^{\circ}-\frac{360^{\circ}}{5 x}\right)-\left(180^{\circ}-\frac{360^{\circ}}{4 x}\right)=6^{\circ}$
$180^{\circ}-\frac{360^{\circ}}{5 x}-180^{\circ}+\frac{360^{\circ}}{4 x}=6^{\circ}$
$\frac{-1440^{\circ}+1800^{\circ}}{20 x}=6^{\circ}$
$120^{\circ} \mathrm{x}=360^{\circ}$
$x=3$
\therefore Number of sides $=5 x=5 \times 3=15$ and $4 x=4 \times 3=12$.

Hence, option A is correct.
9.

Let the number of sides of a regular polygon be n.
$\therefore 180^{\circ}-\frac{360^{\circ}}{n}=2 \times \frac{360^{\circ}}{n}$
$180^{\circ} \times \mathrm{n}-360^{\circ}=720^{\circ}$
$180^{\circ} \times \mathrm{n}=1080^{\circ}$
$\mathrm{n}=6$

Hence, option B is correct.
10.

Let the number of sides be $5 x$ and $6 x$ respectively. Then,
$\left(180^{\circ}-\frac{360^{\circ}}{5 x}\right):\left(180^{\circ}-\frac{360^{\circ}}{6 x}\right)=24: 25$
$\frac{180^{\circ}(5 x-2)}{5 x} \times \frac{6 x}{360^{\circ}(3 x-1)}=\frac{24}{25}$
$75 x-30=72 x-24$
$3 x=6$
$x=2$
\therefore Number of sides $=5 x=5 \times 2=10$ and $6 x=6 \times 2=12$

Hence, option C is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

