

Quadrilateral & Polygon questions for CDS, SSC & Railways Exams

Quadrilateral & Polygon Quiz 2

Directions: Kindly study the following Questions carefully and choose the right answer:

1. ABCD is a cyclic trapezium such that AD || BC, if \angle ABC = 70°, then the value of \angle BCD is :

A. 60° B. 70° C. 40° D. 80° **2.** ABCD is a cyclic trapezium such that AD || BC, if \angle ABC = 70°, then the value of ∠BCD is : A. 60° B. 70° C. 40° D. 80° 3. If an exterior angle of a cyclic quadrilateral be 50°, then the interior opposite angles is : C. 50° D. 90° A. 130° B. 40° 4. ABCD is a cyclic quadrilateral and O is the centre of the circle. If $\angle COD = 140^{\circ}$ and $\angle BAC = 40^\circ$, then the value of $\angle BCD$ is equal to A. 70° B. 90° C. 60° D. 80° 5. If the ratio of an external angle and an internal angle of a regular polygon is 1 : 17, then the number of sides of the regular polygon is C. 36 A. 20 B. 18 D. 12 6. ABCD is a cyclic quadrilateral. AB and DC are produced to meet at P. If ∠ADC = 70° and $\angle DAB = 60°$, then the $\angle PBC + \angle PCB$ is C. 155° A. 130° B. 150° D. 180° 7. A cyclic quadrilateral ABCD is such that AB = BC, AD = DC, AC \perp BD. \angle CAD = Θ . Then the angle $\angle ABC =$ $B.\frac{0}{2}$ Α. Θ C. 20 D. 30

Correct A	nswers:									
	1	2	3	4	5	6	7	8	9	10
	В	В	C	A	C	A	C	В	A	A
Explanati	ons:									
1.										
∠ABC + ∠	2CDA = 1	L80°			A		\sum D			
∠CDA = 1	80° – ∠A	ABC = 18	80° – 70°	= 110°						
We know	that,				в		-			
∠BCD + ∠	.CDA = 1	80°								
∴ ∠BCD =	180° – 4	∠CDA =	180° – 1	10° = 70)°					
Hence, op	oton B is	correct	0				LZ.			
2.			0		ıa	П	K		0	а
∠ABC + ∠	.CDA = 1	80°			$\overset{\wedge}{\checkmark}$		\mathcal{I}_{D}			
∠CDA = 1	80° – ∠A	ABC = 18	80° – 70°	= 110°			$\left(\right)$			
We know	that,				в		\int^{c}			
∠BCD + ∠	.CDA = 1	80°								
∴∠BCD =	180° – 2	∠CDA =	180° – 1	10° = 70)°					
Hence, op	oton B is	correct								
3.										
∠ABC + ∠	ADC = 1	80°					$\int c$			
∠CBE = 50	С°							-		
∴ ∠ABC =	= 180° –	∠CBE =	180° – 5	0° = 130)° A		В	—— E		

 $\therefore \angle ADC = 180^\circ - \angle ABC = 180^\circ - 130^\circ = 50^\circ$

Hence, option C is correct.

4.

The angle subtended at the centre by an arc is twice to that of angle subtended at the circumference.

 $\therefore \angle CAD = \frac{1}{2} \angle COD = 70^{\circ}$

 $\therefore \ \angle BAD = \angle BAC + \angle CAD = 70^{\circ} + 40^{\circ} = 110^{\circ}$

 $\therefore \angle BCD = 180^\circ - \angle BAD = 180^\circ - 110^\circ = 70^\circ$

Hence, option A is correct.

5.

Let the number of sides of a regular polygon be n. Then, According to question, Exterior angle : Interior angle = 1 : 17 $\frac{360^{\circ}}{n}: (180^{\circ} - \frac{360^{\circ}}{n}) = 1 : 17$ $\frac{360^{\circ}}{n} \times \frac{n}{180^{\circ} (n-2)} = \frac{1}{17}$ n - 2 = 34 n = 36 Hence, option C is correct.

 $\angle ABC + \angle ADC = 180^{\circ}$

 $\angle ABC = 180^\circ - \angle ADC = 180^\circ - 2(90^\circ - \Theta) = 2\Theta$

Hence, option C is correct.

8.

If two chords AC and BD of a circle intersect inside or outside the circle when produced at a point P, then

 $AP \cdot PC = BP \cdot DP$

[: AC and BD are diagonals of cyclic quadrilateral and let these are chords of a circle and intersect at point P]

Hence, optjon B is correct.

9.

10.

Given, $\angle ADC = 70^{\circ}$ and $\angle BAD = 95^{\circ}$

 $\angle ADC + \angle ABC = 180^{\circ}$

∠ABC = 180° - ∠ADC = 180° - 70° = 110°

 $\therefore \angle CBE = 180^{\circ} - \angle ABC = 180^{\circ} - 110^{\circ} = 70^{\circ}$

BC = BE (given)

 $\therefore \angle BEC = \angle BCE$

In \triangle BCE, we know that

 \angle BCE + \angle BEC + \angle CBE = 180°

 $2 \angle BCE = 180^{\circ} - \angle CBE = 180^{\circ} - 70^{\circ} = 110^{\circ}$

 $\angle BCE = 55^{\circ} = \angle BEC$

- $\angle BAD + \angle BCD = 180^{\circ}$
- $\angle BCD = \frac{180^{\circ} \angle BAD}{2} = 180^{\circ} 95^{\circ} = 85^{\circ}$

Hence, option A is correct.

