-' $^{-}$SmartKeeda The Question Bank
 Presents

 TestZone

 TestZone
 India's least priced Test Series platform

∇

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Quadrilateral \& Polygon questions for CDS, SSC \& Railways Exams

Quadrilateral \& Polygon Quiz 2
Directions: Kindly study the following Questions carefully and choose the right answer:

1. $A B C D$ is a cyclic trapezium such that $A D \| B C$, if $\angle A B C=70^{\circ}$, then the value of $\angle B C D$ is :
A. 60°
B. 70°
C. 40°
D. 80°
2. $A B C D$ is a cyclic trapezium such that $A D \| B C$, if $\angle A B C=70^{\circ}$, then the value of $\angle B C D$ is :
A. 60°
B. 70°
C. 40°
D. 80°
3. If an exterior angle of a cyclic quadrilateral be 50°, then the interior opposite angles is :
A. 130°
B. 40°
C. 50°
D. 90°
4. ABCD is a cyclic quadrilateral and O is the centre of the circle. If $\angle C O D=140^{\circ}$ and $\angle B A C=40^{\circ}$, then the value of $\angle B C D$ is equal to
A. 70°
B. 90°
C. 60°
D. 80°
5. If the ratio of an external angle and an internal angle of a regular polygon is 1 : 17, then the number of sides of the regular polygon is
A. 20
B. 18
C. 36
D. 12
6. $A B C D$ is a cyclic quadrilateral. $A B$ and $D C$ are produced to meet at P. If $\angle A D C=$ 70° and $\angle D A B=60^{\circ}$, then the $\angle P B C+\angle P C B$ is
A. 130°
B. 150°
C. 155°
D. 180°
7. A cyclic quadrilateral $A B C D$ is such that $A B=B C, A D=D C, A C \perp B D . \angle C A D=0$. Then the angle $\angle A B C=$
A. Θ
B. $\frac{\Theta}{2}$
C. 2Θ
D. 30
8. The diagonals AC and BD of a cyclic quadrilateral ABCD intersect each other at the point P. Then, it is always true that
A. $B P \cdot A B=C D . C P$
B. $A P . C P=B P . D P$
C. $A P \cdot B P=C P . D P$
D. $A P \cdot C D=A B \cdot C P$
9. A quadrilateral $A B C D$ circumscribes a circle and $A B=6 \mathrm{~cm}, C D=5 \mathrm{~cm}$ and $A D=$ 7 cm . The length of side $B C$ is
A. 4 cm
B. 5 cm
C. 3 cm
D. 6 cm
10. $A B C D$ is a cyclic quadrilateral. The side $A B$ is extended to E in such a way that $B E=B C$. If $\angle A D C=70^{\circ}, \angle B A D=95^{\circ}$, then $\angle D C E$ is equal to
A. 140°
B. 120°
C. 165°
D. 110°

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	B	C	A	C	A	C	B	A	A

Explanations:

1.

$\angle A B C+\angle C D A=180^{\circ}$
$\angle C D A=180^{\circ}-\angle A B C=180^{\circ}-70^{\circ}=110^{\circ}$

We know that,

$\angle B C D+\angle C D A=180^{\circ}$
$\therefore \angle \mathrm{BCD}=180^{\circ}-\angle \mathrm{CDA}=180^{\circ}-110^{\circ}=70^{\circ}$

Hence, opton B is correct.
2.
$\angle A B C+\angle C D A=180^{\circ}$
$\angle C D A=180^{\circ}-\angle A B C=180^{\circ}-70^{\circ}=110^{\circ}$

We know that,

$\angle B C D+\angle C D A=180^{\circ}$
$\therefore \angle B C D=180^{\circ}-\angle C D A=180^{\circ}-110^{\circ}=70^{\circ}$

Hence, opton B is correct.
3.
$\angle A B C+\angle A D C=180^{\circ}$
$\angle C B E=50^{\circ}$
$\therefore \angle A B C=180^{\circ}-\angle C B E=180^{\circ}-50^{\circ}=130^{\circ}$

$\therefore \angle A D C=180^{\circ}-\angle A B C=180^{\circ}-130^{\circ}=50^{\circ}$

Hence, option C is correct.
4.

The angle subtended at the centre by an arc is twice to that of angle subtended at the circumference.
$\therefore \angle C A D=\frac{1}{2} \angle C O D=70^{\circ}$
$\therefore \angle \mathrm{BAD}=\angle \mathrm{BAC}+\angle \mathrm{CAD}=70^{\circ}+40^{\circ}=110^{\circ}$

$\therefore \angle B C D=180^{\circ}-\angle B A D=180^{\circ}-110^{\circ}=70^{\circ}$
Hence, option A is correct.
5.

Let the number of sides of a regular polygon be n. Then,
According to question,
Exterior angle : Interior angle = $1: 17$
$\frac{360^{\circ}}{n}:\left(180^{\circ}-\frac{360^{\circ}}{n}\right)=1: 17$
$\frac{360^{\circ}}{n} \times \frac{n}{180^{\circ}(n-2)}=\frac{1}{17}$
$n-2=34$
$n=36$
Hence, option C is correct.
6.

Given, $\angle \mathrm{ADC}=70^{\circ}$
$\angle A D C+\angle A B C=180^{\circ}$
$\angle A B C=180^{\circ}-\angle A D C=180^{\circ}-70^{\circ}=110^{\circ}$

$\therefore \angle \mathrm{PBC}=180^{\circ}-\angle \mathrm{ABC}=180^{\circ}-110^{\circ}=70^{\circ}$
And, $\angle \mathrm{DAB}=60^{\circ}$
$\angle D A B+\angle D C B=180^{\circ}$
$\angle D C B=180^{\circ}-\angle D A B=180^{\circ}-60^{\circ}=120^{\circ}$
$\therefore \angle \mathrm{PCB}=180^{\circ}-\angle \mathrm{DCB}=180^{\circ}-120^{\circ}=60^{\circ}$
$\therefore \angle \mathrm{PBC}+\angle \mathrm{PCB}=70^{\circ}+60^{\circ}=130^{\circ}$

Hence, option A is correct.
7.

In $\triangle A B C$,
Given, $A B=B C$
$\angle B C A=\angle B A C$
And, $A D=D C$

$\angle C A D=\angle A C D$
$\therefore \angle D A B=\angle D C B$
$\therefore \angle \mathrm{DAB}+\angle \mathrm{DCB}=180^{\circ} \Rightarrow 2 \angle \mathrm{DAB}=180^{\circ}$
$\therefore \angle \mathrm{DAB}=90^{\circ}=\angle \mathrm{DCB}$
In $\triangle A D E$, we know that
$\therefore \angle A D E=180^{\circ}-90^{\circ}-\Theta=90^{\circ}-\Theta$
$\therefore \angle \mathrm{ADC}=\angle \mathrm{ADE}+\angle \mathrm{CDE}=2\left(90^{\circ}-\Theta\right)$
$\angle A B C+\angle A D C=180^{\circ}$
$\angle A B C=180^{\circ}-\angle A D C=180^{\circ}-2\left(90^{\circ}-\Theta\right)=2 \Theta$
Hence, option C is correct.
8.

If two chords AC and BD of a circle intersect inside or outside the circle when produced at a point P, then
$A P \cdot P C=B P \cdot D P$

$[\because \mathrm{AC}$ and BD are diagonals of cyclic quadrilateral and let these are chords of a circle and intersect at point P]

Hence, optjon B is correct.
9.

We know tangents drawn to a circle from same external point are equal
$A M=A Q=x$ (let)
$\therefore M B=6-x=B N$
$Q D=7-x=D P$

$P C=y($ let $)=C N$
Now, $C D=D P+P C=5$
$\Rightarrow 7-x+y=5$
$\Rightarrow y-x=-2$
$B C=C N+B N$
$=y+6-x=y-x+6=-2+6=4$
Hence, optjon A is correct.
10.

Given, $\angle A D C=70^{\circ}$ and $\angle B A D=95^{\circ}$
$\angle A D C+\angle A B C=180^{\circ}$
$\angle A B C=180^{\circ}-\angle A D C=180^{\circ}-70^{\circ}=110^{\circ}$
$\therefore \angle \mathrm{CBE}=180^{\circ}-\angle \mathrm{ABC}=180^{\circ}-110^{\circ}=70^{\circ}$
$B C=B E$ (given)
$\therefore \angle B E C=\angle B C E$
In $\triangle B C E$, we know that
$\angle B C E+\angle B E C+\angle C B E=180^{\circ}$
$2 \angle B C E=180^{\circ}-\angle C B E=180^{\circ}-70^{\circ}=110^{\circ}$
$\angle B C E=55^{\circ}=\angle B E C$
$\angle B A D+\angle B C D=180^{\circ}$
$\angle B C D=180^{\circ}-\angle B A D=180^{\circ}-95^{\circ}=85^{\circ}$
$\therefore \angle D C E=\angle B C D+\angle B C E=85^{\circ}+55^{\circ}=140^{\circ}$

Hence, option A is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

