-' $^{-}$SmartKeeda The Question Bank
 Presents

 TestZone

 TestZone
 India's least priced Test Series platform

∇

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Quadrilateral \& Polygon Questions for CDS, SSC \& Railways Exams

Quadrilateral \& Polygon Quiz 1

Directions: Kindly study the following questions carefully and choose the right answer:

1. Two light rods $A B=a+b, C D=a-b$ symmetrically lying on a horizontal $A B$. There are kept intact by two strings $A C$ and $B D$. The perpendicular distance between rods in a. The length of AC is given by
A. a
B. b
C. $\sqrt{a^{2}-b^{2}}$
D. $\sqrt{a^{2}+b^{2}}$
2. If $P Q R S$ be a rectangle such $P Q=\sqrt{3} Q R$. Then, what is ? $P R S$ equal to ?
A. 60
B. 45°
C. 30°
D. 15°
3. In a trapezium, the two non-parallel sides are equal in length, each being of 5 cm . The parallel sides are at a distance of 3 cm apart. If the smaller side of the parallel sides is of length 2 cm , then the sum of the diagonals of the trapezium is
A. $10 \sqrt{5} \mathrm{~cm}$
B. $6 \sqrt{5} \mathrm{~cm}$
C. $3 \sqrt{5} \mathrm{~cm}$
D. $5 \sqrt{5} \mathrm{~cm}$
4. The area of a rectangle lies between $40 \mathrm{~cm}^{2}$ and $45 \mathrm{~cm}^{2}$. If one of the sides is 5 cm , then its diagonal lies between
A. 8 cm and 10 cm
B. 9 cm and 11 cm
C. 10 cm and 12 cm
D. 11 cm and 13 cm
5. Let $A B C D$ be a parallelogram. Let P, Q, R and S be the mid-points of sides $A B$, $B C, C D$ and DA respectively. Consider the following statements.
I. Area of triangle APS < Area of triangle DSR, if BD < AC.
II. Area of triangle $A B C=4$ (Area of triangle BPQ).

Select the correct answer using the codes given below.
A. Only I
B. Only III
C. Both I and II
D. Neither I nor II
6. The area of a rhombus with side of 13 cm and one diagonal 10 cm will be
A. $140 \mathrm{~cm}^{2}$
B. $130 \mathrm{~cm}^{2}$
C. $120 \mathrm{~cm}^{2}$
D. $110 \mathrm{~cm}^{2}$
7. Consider the following statements
I. Let $A B C D$ be a parallelogram which is not a rectangle. Then, $2\left(A B^{2}+B C^{2}\right) \neq A C^{2}$ $+B D^{2}$
II. If $A B C D$ is a rhombus with $A B=4 \mathrm{~cm}$, then $A C^{2}+B D^{2}=n^{3}$ some positive integer n.

Which of the above statements is/are correct?
A. only I
B. Only II
C. Both I and II
D. Neither I nor II
8. $A B C D$ is a parallelogram. E is a point on $B C$ such that $B E: E C=m: n$. If $A E$ and DB intersect in F, then what is the ratio of the area of $\triangle F E B$ to the area of $\triangle A F D$?
A. $\frac{m}{n}$
B. $\left(\frac{m}{n}\right)^{2}$
C. $\left(\frac{n}{m}\right)^{2}$
D. $\left[\frac{m}{m+n}\right]^{2}$
9. A quadrilateral $A B C D$ is inscribed in a circle. If $A B$ is parallel to $C D$ and $A C=B D$, then the quadrilateral must be a
A. parallelogram
B. rhombus
C. trapezium
D. None of these
10. $A B C D$ is a quadrilateral such that $B C=B A$ and $C D>A D$. Which one of the following is correct?
A. $\angle B A D=\angle B C D$
B. $\angle B A D<\angle B C D$
C. $\angle B A D>\angle B C D$
D. $2 \angle B A D=\angle B C D$

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	C	B	B	B	C	B	D	C	C

Explanations:

1.

Since, they are symmetrically on horizontal plane.
$\therefore A C=B D$
$\therefore \mathrm{AE}=\mathrm{BF}=\mathrm{x}$
Now, $A B=(a-b)+2 x$
i.e. $a+b=a-b+2 x \Rightarrow 2 b=2 x \Rightarrow b=x$

Now in $\triangle A C E$,
$x^{2}+a^{2}=A C^{2}$
$A C=b^{2}+a^{2} \Rightarrow A C=\sqrt{b^{2}+a^{2}}$
Hence, option D is correct.
2.

In rectangle PQRS,
$P Q|\mid R S$
$\therefore \quad \angle \mathrm{RPQ}=\angle \mathrm{PRS}$
(\because vertically opposite angles)

Now in $\triangle P Q R$,
$\tan \angle \mathrm{QPR}=\frac{R Q}{P Q} \Rightarrow \tan \angle \mathrm{QPR}=\frac{Q R}{\sqrt{3 Q R}}$
$\Rightarrow \angle \mathrm{QPR}=30^{\circ}$
$\therefore \angle P R S=30^{\circ} \quad[$ From the equation (i)]
Hence, option C is correct.
3.

In $\triangle B C F$,
By the pythagoras theorem,
$B F^{2}=B C^{2}-C F^{2}$
$(B F)^{2}=(5)^{2}-(3)^{2} \Rightarrow B F=4 \mathrm{~cm}$
$\therefore \quad A B=2+4+4=10 \mathrm{~cm}$

Now, in $\triangle A C F$,
$A C^{2}=C F^{2}+F A^{2} \Rightarrow A C^{2}=32+62$
$A C=\sqrt{45} \mathrm{~cm}$
Similarly, $B D=45 \mathrm{~cm}$
\therefore Sum of diagonal $=2 \times \sqrt{45}=2 \times 3 \sqrt{5}=6 \sqrt{5} \mathrm{~cm}$.
Hence, option B is correct.
4.

Area of rectangle lies between $40 \mathrm{~cm}^{2}$ and $45 \mathrm{~cm}^{2}$
Now, one side $=5 \mathrm{~cm}$
Since, area can't be less than $40 \mathrm{~cm}^{2}$
$\therefore \quad$ Other side can't be less than $=\frac{40}{5}=8 \mathrm{~cm}$
Since, area can't be greater than $45 \mathrm{~cm}^{2}$.
$\therefore \quad$ Other side can't be greater than $=\frac{45}{5}=9 \mathrm{~cm}$
$\therefore \quad$ Minimum value of diagonal $=\sqrt{8^{2}+5^{2}}=\sqrt{89}=9.43 \mathrm{~cm}$
$\therefore \quad$ Maximum value of diagonal $=\sqrt{9^{2}+5^{2}}=\sqrt{106}=10.3 \mathrm{~cm}$
So, diagonal lies between 9 cm and 11 cm .

Hence, option B is correct.
5.

Area of $\triangle A P S=$ Area of $\triangle D S R$
$\because A S=S D$ and $A P=D R$
$\therefore \operatorname{ar}(\triangle A B C)=4 \operatorname{ar}(\triangle B P Q)$.
Hence, option B is correct.

6.

As we know that diagonals of a rhombus bisect each other at right angles.

Therefore, applying the Pythagoras theorem taking triangle $\triangle O C D$ into consideration, we get
$O D^{2}+O C^{2}=D C^{2}$

$O D^{2}=D C^{2}-O C^{2}$
$O D^{2}=(13)^{2}-(5)^{2}=169-25$
$O D^{2}=144 \Rightarrow O D=\sqrt{144}$
$O D=12 \mathrm{~cm}$.

Therefore, Diagonal $\left(d_{2}\right)=12+12=24 \mathrm{~cm}$ and Diagonal $\left(d_{1}\right)$ $=10 \mathrm{~cm}$
$\therefore \quad$ Area of rhombus $=\frac{d_{1} \times d_{2}}{2}=\frac{24 \times 10}{2}=120$ square cm.
Hence, option C is correct.

7.
I. $A B C D$ is a parallelogram, then
$A C^{2}+B D^{2}=2\left(A B^{2}+B C^{2}\right)$
II. $A B C D$ is a rhombus and diagonals $A C$ and $B D$ bisect each other.
$\therefore \quad A O=O C$ and $O B=O D$

In $\triangle A O B, \quad A B^{2}=A O^{2}+O B^{2}$
$(4)^{2}=\frac{(A C)^{2}}{2}+\frac{(B D)^{2}}{2}$
$\therefore \quad A C 2+B D 2=64=(4) 3$ i.e., n3
Hence, option B is correct.
8.

In $\triangle A F D$ and $\triangle B F E$,
$\angle A F D=\angle B F E$ (\because vertically opposite angles)
and $\angle A D C=\angle A B C$ (alternate angles)
$\therefore \quad \triangle \mathrm{AFD}-\triangle \mathrm{BFE}$

So, $\frac{\operatorname{ar}(\triangle F E B)}{\operatorname{ar}(\triangle A F D)}=\frac{E B^{2}}{A D^{2}}=\frac{m x^{2}}{(m x+n x)^{2}}=\frac{m 2}{(m+n)^{2}}=\left[\frac{m}{m+n}\right]^{2}$
Hence, option D is correct.
9.

The quadrilateral must be a trapezium because a quadrilateral where only one pair of opposite sides are parallel (in the case $A B \| C D$) is a trapezium.

Hence, option C is correct.

10.

Join AC.
Now, in $\triangle A B C$
$\because A B=B C$
$\angle B A C=\angle B C A$
....(i) (\because angles opposite to equal side)

In $\triangle \mathrm{ADC}$,

CD > AD
$\angle D A C>\angle D C A$
(Since in a triangle opposite to greater side is bigger than the angle opposite to smaller side)
On adding Eq. (i) and (ii), we get
$\angle B A D>\angle B C D$
Hence, option C is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

