-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Problems on trains Questions for Bank Bank \& SSC Exams - Problems on trains Quiz at Smartkeeda.

Problems on Trains Quiz 1

Directions: Kindly study the following Questions carefully and choose the right answer:

1. A 420 m long train crosses a pole in 70 seconds. What is the speed of the train?
A. $5 \mathrm{~m} / \mathrm{s}$
B. $7 \mathrm{~m} / \mathrm{s}$
C. $4.5 \mathrm{~m} / \mathrm{s}$
D. None of these
2. A 240 m long train crosses a platform twice its length in $\mathbf{2} \mathbf{~ m i n}$. what is the speed of the train?
A. $8 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $6 \mathrm{~m} / \mathrm{s}$
D. Can't be determined
3. A train, 120 m long, takes 6 seconds to pass a telegraph post; the speed of train is
A. $72 \mathrm{~km} / \mathrm{hr}$
B. $62 \mathrm{~km} / \mathrm{hr}$
C. $55 \mathrm{~km} / \mathrm{hr}$
D. $85 \mathrm{~km} / \mathrm{hr}$
4. A train 150 m long passes a pole in 15 seconds and crosses another train of the same length travelling in opposite direction in 8 seconds. The speed of the second train in (km / h) is
A. $60 \mathrm{~km} / \mathrm{hr}$
B. $66 \mathrm{~km} / \mathrm{hr}$
C. $72 \mathrm{~km} / \mathrm{hr}$
D. $99 \mathrm{~km} / \mathrm{hr}$
5. Two trains, A and B start from the stations X and Y towards each other. They take 4 hours 48 mins and 3 hours 20 mins to reach Y and X respectively after they meet. If train A is moving at $45 \mathrm{~km} / \mathrm{hr}$, then the speed of train B is
A. $60 \mathrm{~km} / \mathrm{hr}$
B. $64.8 \mathrm{~km} / \mathrm{hr}$
C. $54 \mathrm{~km} / \mathrm{hr}$
D. $37.5 \mathrm{~km} / \mathrm{hr}$
6. A bus travels 50% swifter than a car. Both start from point P at the same time and reach point Q, which is 330 km away from P. On the way, however, the bus lost about 88 minutes while stopping at the stops. The speed of the bus is:
A. 75 kmph
B. 100 kmph
C. 112.5 kmph
D. 125 kmph
7. A train leaves a station A at 7 am and reaches another station B at 11 am. Another train leaves B to 8 am and reaches A at 11:30 am. The two trains cross one another at
A. $8: 36 \mathrm{AM}$
B. $8: 56 \mathrm{AM}$
C. 9:00 AM
D. 9:24 AM
8. Two trains of same length are running in parallel tracks in the same direction with speed $60 \mathrm{~km} / \mathrm{hr}$ and $90 \mathrm{~km} / \mathrm{hr}$ respectively. The latter completely crosses the former in 30 seonds. The length of each train (in metres) is
A. 125
B. 150
C. 100
D. 115
9. A train passes an electrical pole in $\mathbf{2 0}$ seconds and passes a platform $\mathbf{2 5 0} \mathrm{m}$ long in $\mathbf{4 5}$ seconds. Find the length of the train
A. 300 m
B. 200 m
C. 400 m
D. 250 m
10. A train, 120 m long, takes 6 seconds to pass a telegraph post; the speed of train is
A. $72 \mathrm{~km} / \mathrm{hr}$
B. $62 \mathrm{~km} / \mathrm{hr}$
C. $55 \mathrm{~km} / \mathrm{hr}$
D. $37.5 \mathrm{~km} / \mathrm{hr}$

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	C	A	D	C	C	D	A	B	A

Explanations:

1. To solve this question, we can apply a short trick approach we get

Speed of train $=\frac{\text { Length of train }}{\text { Time taken in crossing the pole }}$.
$=\frac{420}{70}=6 \mathrm{~m} / \mathrm{sec}$
Hence, option D is correct.
2. To solve this question, we can apply a short trick approach
"When a train passes a platform or crosses a bridge it should travel the length equal to the sum of the length of train and platform or bridge both"

Speed of train $=\frac{\text { Length of train }+ \text { Length of Platform }}{\text { Required time }}$

Given,
Length of train $=240 \mathrm{~m}$, Crossing time of platform $=2 \times 60=120 \mathrm{sec}$ Length of platform $=240 \times 2=480$, Speed of train $=x$
By the short trick approach, we get
Speed of train $=\frac{240+480}{120} \Rightarrow x=\frac{720}{120}=6 \mathrm{~m} / \mathrm{s}$.
Hence, option C is correct.
3. To solve this question, we can apply a short trick approach we get

Speed of train $=\frac{\text { Length of train }}{\text { Time taken in crossing the pole }}$.
$=\frac{120}{6}=20 \mathrm{~m} / \mathrm{sec}$
$=20 \times \frac{18}{5}=72 \mathrm{kmph}$
Hence, option A is correct.
4. Speed of the first train $=\frac{150}{15}=10 \mathrm{~m} / \mathrm{sec}$

Let the speed of the second train be $\mathrm{xm} / \mathrm{sec}$

Relative speed $=(10+x) \mathrm{m} / \mathrm{sec}$
Length of train $1+$ length of train $2=150+150=300 \mathrm{mtr}$
In the second scenario equation will be like $\frac{300}{10+x}=8$
or, $300=80+8 x$
or, $x=\frac{220}{8}=\frac{55}{2} \mathrm{~m} / \mathrm{sec}$
$\therefore \quad$ speed of the second train $=\frac{55}{2} \times \frac{18}{5}=99 \mathrm{~km} / \mathrm{hr}$
Hence, option D is correct.
5. Let the speed of Train A be $S_{A}=45 \mathrm{kmph}$ and that of Train B be S_{b} Then, time taken by Train $A=T_{A}$
$=4 \mathrm{hrs} 48 \mathrm{~min}=4+\frac{48}{60}=\frac{24}{5} \mathrm{hrs}$
Time taken by Train $B=T_{B}$
$=3 \mathrm{hrs} 20 \mathrm{~min}=3+\frac{20}{60}=\frac{10}{3} \mathrm{hrs}$
Using formula $=\frac{S_{A}}{S_{B}}=\sqrt{\frac{T_{B}}{T_{A}}}$
Note: If two trains (or bodies) start at the same time from points A and B towards each other and after crossing they take a and b sec in reaching B and A respectively, then
(A's speed) : $($ B's speed $)=(\sqrt{b}: \sqrt{a})$.
$\therefore \frac{45}{S_{B}}=\sqrt{\frac{10}{3} \times \frac{5}{24}}=\sqrt{\frac{25}{36}}=\frac{5}{6}$
or, $S_{B}=\frac{45 \times 6}{5}=54 \mathrm{kmph}$
Hence, option C is correct.

6. Approach I:

Let the speed of the car be x kmph .
$\therefore \quad$ The speed of the bus $=x \times \frac{150}{100}=\frac{3 x}{2}$
Now, $\frac{330}{x}-\frac{330}{\frac{3 x}{2}}=\frac{88}{60}$
or, $\frac{330}{x}-\frac{220}{x}=\frac{88}{60}$
or, $\frac{330-220}{x}=\frac{88}{60}$
or, $\frac{110}{x}=\frac{88}{60}$
$\therefore x=\frac{60 \times 110}{88}=75$

Therefore the speed of the car $=75 \mathrm{kmph}$
\therefore Speed of the bus $=\frac{3 x}{2}=75 \times \frac{3}{2}$
$=112.5 \mathrm{kmph}$
Approach II:
Product of speeds $=\frac{\text { Distance } \times \text { Difference in speeds }}{\text { difference in time }}$ Let speed of car be 2 x .
\therefore Speed of the bus be $=3 x$
$3 x \times 2 x=\frac{\frac{330 \times x}{88}}{60}$
$\Rightarrow 3 x \times 2 x=\frac{330 \times x \times 60}{88}$
$\Rightarrow x=\frac{330 \times 10}{88}=\frac{75}{2}$
\therefore Speed of bus $=\frac{75}{2} \times 3=112.5 \mathrm{~km} / \mathrm{h}$
Hence, option C is correct.
7. Kindly refer to the video or go through the explanation given below :

Let the distance between the stations A \& B be 4 kms .
\therefore Speed $A \rightarrow B=\frac{4}{4}=1 \mathrm{~km} / \mathrm{hr}$
\& Speed $B \rightarrow A=\frac{4}{7 / 2}=\frac{8}{7} \mathrm{~km} / \mathrm{hr}$
Suppose they meet x hours after 8 am.
Distance covered by both the trains to meet each other = Distance covered by them from 8 am
$\left(1+\frac{8}{7}\right) \times x$
$\Rightarrow \frac{15}{7} x=3$
$\therefore \quad \mathrm{x}=\frac{7}{5} \mathrm{hr}=1 \mathrm{hr} 24 \mathrm{mins}$
\therefore They will meet at $9: 24 \mathrm{AM}$. (After adding 1 hr 24 mins to 8 am .)
Hence, option D is correct.
8. When two trains cross each other, they cover distance equal to the sum of their lengths with relative speed.
Let's take length of each train $=x$, total length of both trains $=2 x$, Crossing time $=30 \mathrm{sec}$.
Relative speed $=90-60=30 \mathrm{~km} / \mathrm{hr}$
$=\frac{30 \times 5}{18}=\frac{25}{3} \mathrm{~m} / \mathrm{sec}$.
\therefore Total length $=$ Time \times Relative speed
$\Rightarrow 2 x=\frac{30 \times 25}{3} \Rightarrow \frac{10 \times 25}{2}=125 \mathrm{~m}$.
Hence, option A is correct.
9. To solve this question we can apply a shot trick approach

Length of the train

$=\frac{\text { Length of the platform }}{\text { Difference in time }} \times$ (Time taken to cross a man)

By the short trick approach, we get
Train length $=\frac{250}{45-20} \times 20=200 \mathrm{~m}$

Traditional method:

Let the length of the train be x
$\therefore \frac{\mathrm{x}}{20}=\frac{\mathrm{x}+250}{45}$
$\Rightarrow 5 \mathrm{x}=1000 \Rightarrow \mathrm{x}=200 \mathrm{~m}$
Hence, option B is correct.
10. To solve this question, we can apply a short trick approach we get

Speed of train $=\frac{\text { Length of train }}{\text { Time taken in crossing the pole }}$.
$=\frac{120}{6}=20 \mathrm{~m} / \mathrm{sec}$
$=20 \times \frac{18}{5}=72 \mathrm{kmph}$

Hence, option A is correct.

12 Month Plan

2017-18 All Test Series
@ Just

$$
\begin{aligned}
& \text { ₹ 399/- } \\
& 300+\text { फुल लेन्थ टेस्ट }
\end{aligned}
$$ अभी जुड़ें

