

Polynomials questions for CDSE

Polynomials quiz 1

Directions: Study the following questions carefully and choose the right answer:

1. What is the LCM of $a^3b - ab^3$, $a^3b^2 + a^2b^3$ and ab(a + b)?

A. $a^{2}b^{2}(a^{2}-b^{2})$ B. $ab(a^{2}-b^{2})$ C. $a^{2}b^{2} + ab^{3}$ D. $a^{3}b^{3}(a^{2}-b^{2})$

2. What is the HCF of the polynomials $x^4 - 3x + 2$, $x^3 - 3x^2 + 3x - 1$ and $x^4 - 1$?

A. x – 1 B. x + 1 C. $x^2 - 1$ D. None of these 3. If (x - 6) is the HCF of $x^2 - 2x - 24$ and $x^2 - kx - 6$, then what is the value of k? Bbe Question Bank A. 3 C. 6 D. 8 4. The HCF of $(x^4 - y^4)$ and $(x^6 - y^6)$ is A. $x^2 - y^2$ B. x - yC. $x^{3} - y^{3}$ D. $x^4 - v^4$ 5. What is the LCM of $x^2 + 2x - 8$, $x^3 - 4x^2 + 4x$ and $x^2 + 4x$? A. $x(x + 4)(x - 2)^2$ B. x(x + 4)(x - 2)C. $x(x + 4)(x + 2)^{2}$ D. $x(x + 4)^{2}(x - 2)$ 6. What is the HCF of $8(x^5 - x^3 + x)$ and 28 $(x^6 + 1)$? B. $2(x^4 - x^2 + 1)$ A. $4(x^4 - x^2 + 1)$ C. $(x^4 - x^2 + 1)$ D. None of these

7. The LCM of $(x^3 - x^2 - 2x)$ and $(x^3 + x^2)$ is

A. $x^3 - x^2 - 2x$ B. $x^2 + x$

C. $x^4 - x^3 - 2x^2$ D. x - 2

8. What is the HCF of $a^2b^4 + 2a^2b^2$ and $(ab)^7 - 4a^2b^9$?

A. abB. a^2b^3 C. a^2b^2 D. a^3b^2

9. If (x + k) is the HCF of $(x^2 + ax + b)$ and $(x^2 + cx + d)$, then what is the value of k?

$$A.\frac{b+d}{a+c}$$
 $B.\frac{b+d}{c+d}$ $C.\frac{a-b}{c-d}$ $d.\frac{b-d}{a-c}$

10. The HCF and LCM of two polynomials are (x + y) and $(3x^5 + 5x^4y + 2x^3y^2 - 3x^2y^3 - 5xy^4 - 2y^5)$ respectively. If one of the polynomials is $(x^2 - y^2)$, then the other polynomial is

A.
$$3x^4 - 8x^3y + 10x^2y^2 + 7xy^3 - 2y^4$$

B. $3x^4 - 8x^3y - 10x^2y^2 + 7xy^3 - 2y^4$
C. $3x^4 + 8x^3y + 10x^2y^2 + 7xy^3 + 2y^4$
D. $3x^4 + 8x^3y - 10x^2y^2 + 7xy^3 + 2y^4$

Join us on Telegram for more PDFs Click here

Correct answers:

1	2	3	4	5	6	7	8	9	10
А	А	В	А	А	Α	С	С	D	С

Explanations:

1). Let
$$f(x) = a^{3}b - ab^{3} = ab(a^{2} - b^{2}) = ab(a - b)(a + b)$$

 $g(x) = a^{3}b^{2} + a^{2}b^{3} = a^{2}b^{2}(a + b)$
and $h(x) = ab(a + b) = ab(a + b)$
 \therefore LCM of $[f(x), g(x), h(x)] = a^{2}b^{2}(a + b)(a - b) = a^{2}b^{2}(a^{2} - b^{2})$
Hence, option A is correct.
2). Let $f(x) = x^{4} - 3x + 2 = (x - 1)(x^{3} + x^{2} + x - 2)$

2). Let
$$f(x) = x^{2} - 3x + 2 = (x - 1)(x^{2} + x^{2} + x - 2)$$

 $g(x) = x^{3} - 3x^{2} + 3x - 1 = (x - 1)^{3}$
and $h(x) = x^{4} - 1 = (x - 1)(x + 1)(x^{2} + 1)$
 \therefore HCF of $[f(x), g(x), h(x)] = (x - 1)$

Hence, option A is correct.

3). Given that, (x - 6) is the HCF of $x^2 - 2x - 24$ and $x^2 - kx - 6$, i.e., (x - 6) is a factor of both expression,

Let
$$f(x) = x^2 - 2x - 24$$
 and $g(x) = x^2 - kx - 6$

Now, f(x) = g(x) at (x = 6)

$$\Rightarrow (6)^2 - 2(6) - 24 = (6)^2 - k(6) - 6$$

 $\Rightarrow 36 - 12 - 24 = 36 - 6k - 6$

$$\Rightarrow 0 = 30 - 6k \Rightarrow 6k = 30 \Rightarrow k = 5.$$

Hence, option B is correct.

4). Let
$$f(x) = (x^4 - y^4) = [(x^2)^2 - (y^2)^2]$$

 $= (x^2 - y^2) (x^2 + y^2)$
 $= (x - y)(x + y)(x^2 + y^2)$
 $g(x) = (x^6 - y^6) = (x^3)^2 - (y^3)^2$
 $= (x^3 + y^3) (x^3 - y^3)$
 $= (x + y) (x^2 - xy + y^2)(x - y) (x^2 + xy + y^2)$
 $= (x - y)(x + y)(x^2 - xy + y^2)(x^2 + xy + y^2)$
 \therefore HCF of $[f(x), g(x)] = (x - y)(x + y) = x^2 - y^2$
Hence, option A is correct.
5). $f(x) = x^2 + 2x - 8 = x^2 + 4x - 2x - 8$
 $= x(x + 4) = 2(x + 4) = (x - 2)(x + 4)$

$$= x(x + 4) - 2(x + 4) - (x - 2)(x + 4)$$

$$g(x) = x^{3} - 4x^{2} + 4x = x^{3} - 2x^{2} - 2x^{2} + 4x$$

$$= x^{2}(x - 2) - 2x(x - 2) = (x^{2} - 2x)(x - 2)$$

$$= x (x - 2) (x - 2)$$

$$h(x) = x^{2} + 4x = x(x + 4)$$
So, LCM of [f(x), g(x), h(x)] = x(x - 2)(x + 4)(x - 2) = x(x + 4)(x - 2)^{2}
Hence, option A is correct.

6). Let
$$f(x) = 8(x^5 - x^3 + x) = 4 \times 2 \times x (x^4 - x^2 + 1)$$

and $g(x) = 28 (x^6 + 1) = 7 \times 4[(x^2)^3 + (1^2)^3]$
 $= 4 \times 7 (x^2 + 1) (x^4 - x^2 + 1)$
 \therefore HCF of $[f(x), g(x)] = 4(x^4 - x^2 + 1)$
Hence, option A is correct.
7). Let $f(x) = (x^3 - x^2 - 2x) = x(x^2 - x - 2)$
 $= x\{x^2 - 2x + x - 2\}$
 $= x\{x(x - 2) + 1 (x - 2)\} = x(x + 1)(x - 2)$
And $g(x) = x^3 + x^2 = x^2(x + 1) = x \cdot x (x + 1)$

$$= x\{x^{2} - 2x + x - 2\}$$

$$= x\{x(x - 2) + 1 (x - 2)\} = x(x + 1)(x - 2)$$
And $g(x) = x^{3} + x^{2} = x^{2}(x + 1) = x \cdot x (x + 1)$

$$\therefore LCM \text{ of } [f(x), g(x)] = x(x + 1) \cdot x \cdot (x - 2) = x^{2} (x + 1)(x - 2)$$

$$= x^{2}(x^{2} - x - 2) = x^{4} - x^{3} - 2x^{2}.$$

Hence, option C is correct.

8). Let
$$f(x) = a^2b^4 + 2a^2b^2 = a^2b^2(b^2 + 2)$$

And $g(x) = (ab)^7 - 4a^2b^9 = a^7b^7 - 4a^2b^9 = a^2b^2(a^5b^5 - 4b^7)$
 \therefore HCF of $[f(x), g(x)] = a^2b^2$

Hence, option C is correct.

9). Given that, (x + k) is the HCF of (x² + ax + b) and (x² + cx + d), i.e., (x + k) is a factor of both expression

Let $f(x) = (x^2 + ax + b)$ and $g(x) = (x^2 + cx + d)$

Now,
$$f(x) = g(x)$$
 at $(x = -k)$

$$\Rightarrow (-k)^{2} + a(-k) + b = (-k)^{2} + c (-k) + d$$

$$\Rightarrow (a - c)k = (b - d)$$

$$\Rightarrow k = \frac{(b - d)}{(a - c)}.$$

Hence, option D is correct.

10). To solve this question, we can apply a formula

First Polynomial × Second Polynomial = HCF × LCM

Other Polynomial =
$$\frac{HCF \times LCM}{Given Polynomial}$$
$$= \frac{(x + y)(3x^5 + 5x^4y + 2x^3y^2 - 3x^2y^3 - 5xy^4 - 2y^5)}{(x^2 - y^2)}$$
$$= \frac{3x^5 + 5x^4y + 2x^3y^2 - 3x^2y^3 - 5xy^4 - 2y^5}{(x - y)}$$
$$= 3x^4 + 8x^3y + 10x^2y^2 + 7xy^3 + 2y^4$$

Hence, option C is correct.

Join us on Telegram for more PDFs Click here

