

Maths Inequalities Questions for Bank and Insurance Exams

Maths inequalities Quiz 7

Directions: In each of the following questions, read the given statement and compare the Quantity I and Quantity II on its basis. (only quantity is to be considered)

1. A motorboat can travel x km upstream and $x+20 \mathrm{~km}$ downstream in 17.5 hours. If the ratio of the speed of the motorboat in still water to the speed of stream is $3: 1$ and the difference between their speed is 4 km .
Quantity I: What is the value of x ?
Quantity II: How much distance the motorboat will travel downstream in 5 hours 15 minutes?
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity : II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established
2. Two persons, A and B together can do a piece of work in 15 days. B is 80% as efficient as A.

Quantity I: If they work on alternate day, starting with A then how many days will they take to complete 50% of the work?
Quantity II: How many days, B alone will take to complete 40% of the total work?
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity: II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established
3. The speed of a 500 meters long train is 5 km per hour more than that of a car. If the car and the train travel in opposite direction then the car can cross the train completely in 1.5 minutes.

Quantity I: What is the speed of the train?
Quantity II: What will be the speed of car when it is increased by 50% ?
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity : II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established
4. In a mixture of Ghee and Dalda, the quantity of Dalda is 40% less than the quantity of Ghee. When 5 litres of pure Ghee were added then the quantity of Ghee becomes 80% more than the quantity of Dalda.
Quantity I: What is the quantity of Dalda in the mixture?
Quantity II: 40 litres
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity : II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established
5. On $1^{\text {st }} \operatorname{Jan} 2018$, the average age of a family of 5 members is 45 years. On $1^{\text {st }}$ July 2018, one of the members of the family died. On $1^{\text {st }}$ Jan 2019, the average age of the family will become 32 years.
Quantity I: At what age, did the person die?
Quantity II: 100 years
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity : II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established
6. In a mixture of milk and water, the ratio of milk to water is $2: y$. When 4 litres of milk were added in the mixture then, the concentration of water becomes 50% but when 4 litres of water were added in the mixture then the concentration of milk becomes 33.33\%.

Quantity I: Milk will be what part of the mixture when, 5 litres of milk were added in the original mixture?
Quantity II: Water will be what part of the mixture when 3 litres of water were added in the original mixture?
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity : II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established
7. Quantity I: ' x ' $x^{2}-10 v 7 x+168=0$

Quantity II : ' y ' $y^{2}-v 6 y-72=0$
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity : II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established
8. In the given rectangle, $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{CD}=8 \mathrm{~cm}$. $\mathrm{AF}=\mathrm{FB}$ and $\mathrm{AE}=\mathrm{ED}$.

Quantity I: What is the area of shaded region?
Quantity II: What is the area of unshaded region?
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity : II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established
9. The efficiency of A is 25% more than that of B. And total work is 100 units. Quantity I : Find the number of days B alone will take to complete 75% of the work? Quantity II : Find the number of days A and B together will take to complete 150% of the work?
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity : II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established
10. Quantity I: A gave one-fifth of the amount he had to B. B in turn gave half of what he received from A to C. If the difference between the remaining amount with A and the amount received by C is Rs. 700, how much money did B receive from A ? Quantity II: Rs 250
A. Quantity : I > Quantity : II
B. Quantity : I \geq Quantity : II
C. Quantity : I < Quantity : II
D. Quantity : II \geq Quantity : I
E. Quantity I = Quantity II or relation can't be established

Smartkeeda

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
C	A	A	C	A	C	A	E	A	C

Explanations:

1. Let the speed of the motorboat in still water $=3 \mathrm{a} \mathrm{km} / \mathrm{hr}$ then the speed of the motorboat in stream $=\mathrm{a}$ km/hr
According to the question, $3 \mathrm{a}-\mathrm{a}=2 \mathrm{a}=4$
a $=2 \mathrm{~km} / \mathrm{hr}$
the speed of the motorboat in still water = 3a $\mathrm{km} / \mathrm{hr}=6 \mathrm{~km} / \mathrm{hr}$
the speed of the motorboat in stream $=a \mathrm{~km} / \mathrm{hr}=2 \mathrm{~km}$ per hour
Upstream speed $=6-2=4 \mathrm{~km} / \mathrm{hr}$
Downstream speed $=6+2=8 \mathrm{~km}$ per hour
$\frac{x}{4}+\frac{x+20}{8}=17.5$
$8 x+4 x+80=17.5 \times 32=560$
$12 x=560-80=480$
$\mathrm{x}=40$

Quantity I: 40
Quantity II :
Distance $=$ speed \times time $=\frac{8 \times 21}{4}=42 \mathrm{~km}$
Therefore, Quantity I < Quantity II
Hence, option C is correct.
2. Let A's efficiency $=5 x$ units then B's efficiency $=80 \%$ of $5 x=4 x$

Total work done by A and B together in 15 days $=(5 x+4 x) \times 15=9 x \times 15=135 x$ units
Quantity I:
50% of the work $=\frac{135 \mathrm{x}}{2}=67.5 \mathrm{x}$
First day, A will do 5 x units
2nd day, B will do $4 x$ units
In the first 2 days, i.e. in one cycle $5 x+4 x=9 x$ units
In 7 cycle i.e. 14 days $9 x \times 7=63 x$ units
Remaining $=67.5 x-63 x=4.5 x$ units
That A will do in approximately 1 day
Total number of days $=14+1=15$ days approximately
Quantity II: 40% of the work $=40 \%$ of $135 x$
$=40 \times \frac{135 x}{100}=54 x$
B alone will take, $\frac{54 x}{4 x}=13.5$ days
Therefore, Q1 > Q2
Hence, option A is correct.
3.

Let the speed of the car $=x \mathrm{~km}$ per $\mathrm{hr}=\mathrm{x} \times \frac{5}{18} \mathrm{~m} / \mathrm{s}$
The speed of the train $=x+5 \mathrm{~km} / \mathrm{hr}=(x+5) \times \frac{5}{18} \mathrm{~m} / \mathrm{s}$
If they travel in opposite direction then the relative speed $=(x+x+5) \mathrm{km}$ per hr
$=(2 x+5) \times \frac{5}{18} \mathrm{~m} / \mathrm{s}$
We know that, distance $=$ speed \times time
$500=(2 x+5) \times \frac{5}{18} \times 90$
$2 x+5=20$
$x=7.5 \mathrm{~km}$ per hour

Quantity I :

The speed of the train $=x+5=12.5 \mathrm{~km}$ per hr

Quantity II:

150% of $7.5=\frac{150 \times 7.5}{100}=11.25 \mathrm{~km}$ per hour
Therefore, Quantity: I > Quantity : II
Hence, option A is correct.
4. Let the quantity of Ghee $=10 x$ litres then the quantity of Dalda $=(100-40) \%$ of $10 x=60 \%$ of $10 x=6 x$ litres
When 5 litres of Ghee was added then the quantity of Ghee $=10 x+5$ litres and the quantity of Dalda $=$ $6 x$ litres

According to the question,
180% of $6 x=(10 x+5)$
$10.8 x=10 x+5$
$0.8 x=5$
$8 x=50$
$x=6.25$ litres
Quantity I :
The quantity of Dalda $=6 x=6 \times 6.25=37.5$ litres
Therefore, Quantity : I < Quantity : II
Hence, option C is correct.
5. On $1^{\text {st }}$ Jan 2018, the sum of the age of 5 members $=45 \times 5=225$ years

On $1^{\text {st }}$ Jan 2019, the sum of the age of 4 members $=32 \times 4=128$ years
So, on $1^{\text {st }}$ Jan 2018 the sum of the age of 4 members $=31 \times 4=124$ years
So, on $1^{\text {st }}$ Jan 2018 the age of the person who died on 1st July $2018=(225-124)=101$ years
The age of person when he died $=(101+0.5)=101.5$ years
Therefore, Quantity : I > Quantity : II
Hence, option A is correct.
6. Let the quantity of milk $=2 x$ litres then the quantity of water $=y x$ litres

According to the question,
$y x=50 \%$ of $(2 x+y x+4)$
$2 y x=2 x+y x+4$
$y x=2 x+4$ \qquad
$2 x=33.33 \%$ of $(2 x+y x+4)$
$6 x=2 x+y x+4$
$y x=4 x-4$
From the equation (i) and (ii)
$2 x+4=4 x-4$
$2 x=8$
$x=4$
Put the value of x in the equation (i)
$\mathrm{y}=3$
The quantity of mil in the original mixture $=2 x=8$ litres and the quantity of water $=y x=3 \times 4=12$ litres Quantity I: when, 5 litres of milk were added in the original mixture
milk $=\frac{8+5}{12+8+5}=\frac{13^{\text {th }}}{25}$ part
Quantity II: when 3 litres of water were added in the original mixture
water $=\frac{12+3}{12+8+3}=\frac{15}{23}$
Therefore, Quantity : I < Quantity : II, Hence, option C is correct.

7. Quantity I:

$x^{2}-10 v 7 x+168=0$
$x^{2}-4 \sqrt{ } 7 x-6 \sqrt{ } 7 x+168=0$
$x(x-4 \sqrt{ } 7)-6 \vee 7(x-4 \sqrt{ })=0$
$(x-4 \sqrt{ } 7)(x-6 \sqrt{ } 7)=0$
$x=4 \sqrt{ } 7,6 \sqrt{ } 7$

Quantity II:

$y^{2}-\sqrt{ } 6 y-72=0$
$y^{2}+3 \sqrt{ } 6 y-4 \sqrt{ } 6 y-72=0$
$y(y+3 v 6)-4 \sqrt{ } 6(y+3 \sqrt{ } 6)=0$
$(y+3 \sqrt{ } 6)(y-4 \sqrt{ } 6)=0$
$y=-3 \sqrt{ } 6,4 \sqrt{ } 6$
For $x=4 \sqrt{ } 7$, or $6 \sqrt{ } 7$ and $y=-3 \sqrt{ } 6$,or $4 \sqrt{ } 6 x>y$

Therefore, $x>y$
Hence, option A is correct.
8.
$A E=E D=\frac{8}{2}=4 \mathrm{~cm}$
$A F=F B=\frac{12}{2}=6 \mathrm{~cm}$

Area of $B F C=\frac{1}{2} \times 8 \times 6=24$ sq. cm

Area of $\mathrm{ACB}=\frac{1}{2} \times 12 \times 8=48$ sq. cm

Area of DEC $=\frac{1}{2} \times 12 \times 4=24 \mathrm{sq} . \mathrm{cm}$

Area of $D A C=\frac{1}{2} \times 12 \times 8=48 \mathrm{sq} . \mathrm{cm}$

Quantity I : Area of shaded region = area of DEC + area of acf $=24+(48-24)=48 \mathrm{sq} . \mathrm{cm}$
Quantity II : Area of unshaded region = area of rectangle - area of shaded region $=96-48=48 \mathrm{sq} . \mathrm{cm}$
Therefore, Quantity I = Quantity II
Hence, option E is correct.
9. The ratio of the efficiency of A and $B=5: 4$

The total units of work $=100$ units then the number of days, A will take $=\frac{100}{5}=20$ days
and the number of days, B will take
$=\frac{100}{4}=25$ days

Quantity I: 75\% of the work $=75 \%$ of $100=75$ units
The number of days, B alone will take $=\frac{75}{4}=18.75$ days

Quantity II: 150% of the work $=150$ units

The number of days, A and B together will take to complete $=\frac{150}{5+4}=\frac{150}{9}=16.67$ days

Therefore, Quantity I > Quantity II Hence, option A is correct.

10. Quantity I:

Suppose initially A had Rs. x
Then, amount received by $B=$ Rs. $(x / 5)$
Amount remaining with $A=$ Rs. $x-\frac{x}{5}=$ Rs. $\frac{4 x}{5}$

Amount received by $C=$ Rs. $\left(\frac{1}{2} \times \frac{x}{5}\right)=$ Rs. $\frac{x}{10}$

Since, $\left(\frac{4 x}{5}-\frac{x}{10}\right)=700$
$\Rightarrow 7 \mathrm{x}=700 \times 10$
$\Rightarrow \mathrm{x}=1000$.
Hence, amount received by $B=$ Rs. $\frac{x}{5}=$ Rs. 200

Quantity II : Rs 250

Here we can see Quantity II is more than Quantity I, Hence option C is right answer.

- ${ }^{1}$ - SmartKeda

Presents

TestZone

India's least priced Test Series platform

ALL BANK EXAMS

2019-20 Test Series

@ Just
₹ 499/-
300+ Full Length Tests

\checkmark Brilliant Test Analysis
\checkmark Excellent Content
\checkmark Unmatched Explanations

