

Geometry Questions for CDS, SSC \& Railways Exams

Lines \& Angles Quiz 3

Directions: Kindly study the following questions carefully and choose the right answer:

1. In the figure given below, $A B C$ is a triangle. $B C$ is parallel to $A E$. If $B C=A C$, then what is the value of $\angle C A E$?
A. 20°
B. 30°
C. 40°
D. 50°

2. In the figure given below, $A B$ is parallel to $C D . \angle A B C=65^{\circ}, \angle C D E=15^{\circ}$ and $A B$ $=A E$. What is the value of $\angle A E F$?
A. 30°
B. 35°
C. 40°
D. 45°

3. The angles $x^{\circ}, a^{\circ}, c^{\circ}$ and $(\pi-b)^{\circ}$ are indicated in the figure given below Which one of the following is correct?
A. $x^{\circ}=a^{\circ}+c^{\circ}-b^{\circ}$
B. $x^{\circ}=b^{\circ}-a^{\circ}-c^{\circ}$
C. $x^{\circ}=a^{\circ}+b^{\circ}+c^{\circ}$
D. $x^{\circ}=a^{\circ}-b^{\circ}+c^{\circ}$

4. Consider the following statements

I. The locus of points which are equidistant from two parallel lines is a line parallel to both of them and drawn mid-way between them.
II. The perpendicular distance of any point on this locus line from two original parallel lines are equal. Further, no point outside this locus line has this property. Which of the above statements is/are correct?
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II
5. A wheel makes 12 revolutions per min. The angle in radian described by a spoke of the wheel in 1 s is:
A. $\frac{5 \pi}{2}$
B. $\frac{2 \pi}{5}$
C. $\frac{3 \pi}{5}$
D. $\frac{4 \pi}{5}$
6. If the arms of one angle are respectively parallel to the arms of another angle, then the two angles are
A. Neither equal nor supplementary
B. not equal but supplementary
C. equal but not supplementary
D. Either equal or supplementary
7. In a $\triangle A B C, \frac{1}{2} \angle A+\frac{1}{3} \angle C+\frac{1}{2} \angle B=80^{\circ}$, then what is the value of $\angle C$?
A. 35°
B. 40°
C. 60°
D. 70°
8. The complement angle of 80° is
A. $\frac{18}{\pi}$ radian
B. $\frac{5 \pi}{9}$ radian
C. $\frac{\pi}{18}$ radian
D. $\frac{9}{5 \pi}$ radian
9. In the given figure $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{ALC}=60^{\circ}$ and EC is the bisector of $\angle L C D$. If $\mathrm{EF} \|$ $A B$ then the value of $\angle C E F$ is
A. 120°
B. 140°
C. 150°

D. None of these
10. In the given figure lines $A P$ and $O Q$ intersect at G If $\angle A G O+\angle P G F=70^{\circ}$ and $\angle P G Q=40^{\circ}$. Find the angle value of $\angle P G F$.
A. 31°
B. 35°
C. 30°
D. 20°

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	B	C	C	B	B	C	C	C	C

Explanations:

1.

An angle which is greater than 180° but less than 360° is called a reflex
Given that, $B C \| A E$
$\angle C B A+\angle E A B=180^{\circ}$
$\Rightarrow \angle E A B=180^{\circ}-65^{\circ}=115^{\circ}$
$\because B C=A C$
Hence, $\triangle A B C$ is an isosceles triangle.

$\Rightarrow \angle C B A=\angle C A B=65^{\circ}$
Now, $\angle E A B=\angle E A C+\angle C A B$
$\Rightarrow 115^{\circ}=x+65^{\circ} \Rightarrow x=50^{\circ}$.
Hence, option D is correct.
2.

Given that,
$\angle A B C=65^{\circ}$ and $\angle C D E=15^{\circ}$

Here, $\angle \mathrm{ABC}+\angle \mathrm{TCB}=180^{\circ}$
$(\because A B|\mid C D)$
$\angle \mathrm{TCB}=180^{\circ}-\angle A B C$
$\therefore \angle \mathrm{TCB}=180^{\circ}-65^{\circ}=115^{\circ}$
$\because \angle T C B+\angle D C B=180^{\circ}$
$\therefore \angle \mathrm{DCB}=65^{\circ}$

Now, in $\triangle C D E$
$\angle C E D=180^{\circ}-(\angle E C D+\angle E D C) \quad(\because \angle E C D=\angle B C D)$
$=180^{\circ}-\left(-65^{\circ}+15^{\circ}\right)=100^{\circ}$

$\because \angle \mathrm{DEC}+\angle \mathrm{FEC}=180^{\circ}$
$\Rightarrow \angle F E C=180^{\circ}-100^{\circ}=80^{\circ}$

Given that, $A B=A E$.
i.e. $\triangle A B E$ an isosceles triangle.
$\therefore \angle A B E=\angle A E B=65^{\circ}$
$\because \angle A E B+\angle A E F+\angle F E C=180^{\circ}$
$\Rightarrow 65^{\circ}+\mathrm{x}^{\circ}+80^{\circ}=180^{\circ}$
$\therefore \mathrm{x}^{\circ}=180^{\circ}-145^{\circ}=35^{\circ}$.

Hence, option B is correct.
3.

Correct Option: C
$\angle P C T+\angle P C B=\pi$
(Linear pair)
$\angle P C B=\pi-\left(\pi-b^{\circ}\right)=b^{\circ}$

In $\triangle B P C$,
$\angle P C B+\angle B P C+\angle P B C=\pi$
$\angle \mathrm{PBC}=\pi-\angle \mathrm{PCB}-\angle \mathrm{BPC}=\pi-\mathrm{b}^{\circ}-\mathrm{a}^{\circ}$
$\because \angle A B E+\angle E B C=\pi \quad(\because \angle P B C=\angle E B C) \quad$ (linear pair)
$\angle A B E=\pi-\angle P B C=\pi-\left(\pi-b^{\circ}-a^{\circ}\right)=a^{\circ}+b^{\circ}$

Now, in $\triangle A B E$

Sum of two interior angles = Exterior angle
$\angle E A B+\angle A B E=\angle B E S \Rightarrow c^{\circ}+b^{\circ}+a^{\circ}=x^{\circ}$
$\therefore \quad \mathrm{x}^{\circ}=\mathrm{a}^{\circ}+\mathrm{b}^{\circ}+\mathrm{c}^{\circ}$.

Hence, option C is correct.
4.

Correct Option: C

Statements I and II are both true, because the locus of points which are equidistant from two parallel lines is a line parallel to both of them and draw mid way between them.

Also, it is true that the perpendicular distances of any point on this locus line from two original parallel lines are equal. Further, no point outside this locus line has this property.

Hence, option C is correct.
5.

In $1 \mathrm{~min}=60 \mathrm{~s}$ distance travelled by the wheel
$=12 \times$ Its circumference
$=12 \times 2 \pi r$
\therefore In 1 s distance travelled by the wheel $=\frac{12 \times 2 \pi r}{60}=\frac{2}{5} \pi r$
\because Angle $=\frac{\text { Arc }}{\text { Radius }}=\frac{2 / 5 \pi r}{r}=\frac{2 \pi}{5}$

Which is the required angle.

Hence, option B is correct.
6.

If the arms of one angle are respectively parallel to the arms of another angle, then the two angles are not equal but supplementary.
Ex.

If $11\left|\mid 12 \Rightarrow \angle 1+\angle 2=180^{\circ}\right.$
(Supplementary)

Hence, option B is correct.
7.

Given that,
$\frac{1}{2} \angle A+\frac{1}{3} \angle C+\frac{1}{2} \angle B=80^{\circ} \Rightarrow 3 \angle A+2 \angle C+3 \angle B=480^{\circ}$
$\Rightarrow 3(\angle A+\angle B)+2 \angle C=480^{\circ}$

Also, in $\triangle \mathrm{ABC}$,
$\angle A+\angle B+\angle C=180^{\circ}$

On multiplying both sides L.H.S. \& R.H.S. by 3, we get
$3(\angle A+\angle B)+3 \angle C=540^{\circ}$
On subtracting Eq. (i) from Eq. (ii), we get
$\angle C=60^{\circ}$.

Hence, option C is correct.
8.

Correct Option: C

Complementary angles: Complementary angles are angle pairs whose measures sum to one right angle (90°).

So, the required angle will be 10°
$180^{\circ}=\pi$ radian
$1^{\circ}=\frac{\pi}{180}$
$\therefore \quad 10^{\circ}=\frac{\pi \times 10}{180}=\frac{\pi}{18}$

Hence, option C is correct.
9.

$\angle A L C=\angle L C D=60^{\circ} \quad[\because$ Alternate angles]
EC is the bisector of $\angle \mathrm{LCD}$
$\therefore \angle \mathrm{ECD}=\frac{1}{2} \times \angle \mathrm{LCD}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
$\angle C E F+\angle E C D=180^{\circ} \quad[\because$ Pair of interior angles $]$
$\angle C E F+30^{\circ}=180^{\circ}$
$\angle C E F=180^{\circ}-30^{\circ}=150^{\circ}$

Hence, option C is correct.
10.

As, AP is a straight line and rays GO and GF stands on it.
$\therefore \angle \mathrm{AGO}+\angle \mathrm{OGF}+\angle \mathrm{PGF}=180^{\circ}$
$\Rightarrow(\angle \mathrm{AGO}+\angle \mathrm{PGE})+\angle \mathrm{OGF}=180^{\circ}$
$\Rightarrow 70^{\circ}+\angle O G F=180^{\circ}$
$\Rightarrow \angle \mathrm{OGF}=180^{\circ}-70^{\circ}$
$\Rightarrow \angle \mathrm{OGF}=110^{\circ}$

As, $O Q$ is a straight line, rays GF and GP stands on it.
$\angle \mathrm{OGF}+\angle \mathrm{PGF}+\angle \mathrm{PGQ}=180^{\circ}$

Putting value of $\angle \mathrm{OGF} \& \angle \mathrm{PGQ}$
$110^{\circ}+\angle \mathrm{PGF}+40^{\circ}=180^{\circ}$
$\angle \mathrm{PGF}=180^{\circ}-150^{\circ}=30^{\circ}$

Hence, option C is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

