

Height and Distance Questions for CGL Tier 2, CGL Tier 1 and SSC 10+2 Exams

HEIGHT & DISTANCE QUIZ 4

Directions: Study the following questions carefully and choose the right answer:

1. The angle of elevation of the top of a tower from the point P and Q at distance of 'a' and 'b' respectively from the base of the tower and in the same straight line with it are complementary. The height of the tower is

A. \sqrt{ab} B. $\frac{a}{b}$ C. ab D. a^2b^2

2. The angle of elevation of a tower from a distance 100 m from its foot is 30°. Height of the tower is :

3. A tower standing on a horizontal plane subtends a certain angle at a point 160 m apart from the foot of the tower. On advancing 100 m towards it, the tower is found to subtend an angle twice as before. The height of the tower is

A. 80 m	B. 100 m	C. 160 m	D. 200 m		

4. The angle of elevation of a tower from a distance 50 m from its foot is 30°. The height of the tower is

A.
$$50\sqrt{3}$$
 m B. $\frac{50}{\sqrt{3}}$ m C. $75\sqrt{3}$ m D. $\frac{75}{\sqrt{3}}$ m

6. The length of the shadow of a vertical tower on level ground increases by 10 metres when the altitude of the sun changes from 45° to 30°. Then the height of the tower is

A.
$$5\sqrt{3}m$$
 B. $10(\sqrt{3} + 1)m$ C. $5(\sqrt{3} + 1)m$ D. $10\sqrt{3}m$

6. The elevation of the top of a tower from a point on the ground is 45°. On traelling 60 m from the point towards the tower, the elevation of the top becomes 60°. The height of the tower (in metres) is

A. 30 B. $30(3 - \sqrt{3})$ C. $30(3 + \sqrt{3})$ D. $30\sqrt{3}$

7. From two points on the ground lying on a straight line through the foot of a pillar, the two angles of elevation of the top of the pillar are complementary to each other. If the distance of the two points from the foot of the pillar are 9 metres and 16 metres and the two points lie on the same side of the pillar, then the height of the pillar is

A. 5 m B. 10 m C. 7 m D. 12 m

8. The angle of elevation of the top of a vertical tower situated perpendicularly on a plane is observed as 60° from a point P on the same plane. From another point Q, 10 m vertically above the point P, the angle of depression of the foot of the tower is 30°. The height of the tower is

A. 15 m B. 30 m C. 20 m D. 25 m

9. From a point 20 m away from the foot of a tower, the angle of elevation of the top of the tower is 30°. The height of the tower is

$A.10\sqrt{3}m$	$B.20\sqrt{3}m$	$C.\frac{10}{\sqrt{3}}m$	$D.20\sqrt{3}m$
-----------------	-----------------	--------------------------	-----------------

10. The angle of elevation of a ladder leaning against a house is 60° and the foot of the ladder is 6.5 metres from the house. The length of the ladder is

A. $\frac{13}{\sqrt{3}}$ m B. 13 m C. 15 m D. 3.25 m

Correct answers:

1	2	3	4	5	6	7	8	9	10
А	А	А	В	А	С	D	В	D	В

Explanations:

1.

[: tan (90° – Θ) = cot Θ]

By multiplying both equations (i) and (ii)

 $\tan \Theta \cot \Theta = \frac{h}{b} \times \frac{h}{a}$ $1 = \frac{h^2}{ab} \quad [\because \tan \Theta \cot \Theta = 1]$

$$h = \sqrt{ab}$$

Hence, option A is correct.

Given, distance BC = 100 m

Let, the height of the tower = h metre

In ΔABC,

 $\tan 30^\circ = \frac{AB}{BC}$ $\frac{1}{\sqrt{3}} = \frac{h}{100}$ $h = \frac{100}{\sqrt{3}}m$

Hence, option A is correct.

[From eq. (i)] $\frac{3}{4} = 1 - \left(\frac{h}{160}\right)^2$ $\left(\frac{h}{160}\right)^2 = 1 - \frac{3}{4} = \frac{1}{4}$ $\frac{h}{160} = \frac{1}{4} = \frac{1}{2}$ h = 80 m

Hence, option A is correct.

Given, distance BC = 50 m

Let, the height of the tower AB = h metre

In ∆ABC,

$$\tan 30^\circ = \frac{AB}{BC}$$
$$\frac{1}{\sqrt{3}} = \frac{h}{50}$$
$$h = \frac{50}{\sqrt{3}}m$$

Hence, option B is correct.

Let, the height of the pillar, AB = h metre.

When the sun's angle of elevation was 45°, then the length of shadow of the pillar is BD = x (let).

And, when the sun's angle of elevation is 30°, then the length of shadow of the pillar is BC.

When the sun changes from 45° to 30°, then the length of shadow of the pillar increases CD = 10 (given)

$$\therefore$$
 BC = CD + BD = (10 + x) m

In ∆ABD,

 $\tan 45^\circ = \frac{AB}{BD} \Rightarrow 1 = \frac{h}{x}$

 \Rightarrow h = x ...(i)

Now, in ΔABC,

$$\tan 30^\circ = \frac{AB}{BC} \implies \frac{1}{3}$$

$$=\frac{h}{x+10}$$

 \Rightarrow h 3 - x = 10

$$\Rightarrow h \quad 3 - h = 10 \quad [From eq. (i)]$$
$$\Rightarrow h(3-1) = 10$$
$$\Rightarrow h = \frac{10}{\sqrt{3} - 1} \times \frac{3+1}{\sqrt{3} + 1}$$
$$= 5(\sqrt{3} + 1)m$$

Hence, option A is correct.

6.

Let, the height of the tower, AB = h metre

And, BD = x metre

Given, CD = 60 m

 \therefore BC = CD + BD = (60 + x) m

In ∆ABC,

$$\tan 45^\circ = \frac{AB}{BC} \implies 1 = \frac{h}{60 + x}$$

$$\Rightarrow$$
 x = h - 60 ...(i)

Now, in $\triangle ABD$,

$$\tan 60^\circ = \frac{AB}{BD} \Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow h = x \sqrt{3}$$

$$\Rightarrow h = (h - 60) \quad 3 \quad [From eq. (i)]$$

$$\Rightarrow h = h \sqrt{3} - 60 \sqrt{3}$$

$$\Rightarrow h(\sqrt{3} - 1) = 60\sqrt{3}$$

$$\Rightarrow h = \frac{60\sqrt{3}}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$$

$$= 30\sqrt{3}(\sqrt{3} + 1) = 30(3 + \sqrt{3})m$$

Hence, option C is correct.

Given, distance BD = 9 m and BC = 16 m

Let, the height of the pillar = h metre

 \angle ACB and \angle ADB are complementary.

 $\therefore \angle ACB = \Theta$ and $\angle ADB = (90^\circ - \Theta)$

In ∆ABC,

 $\tan \Theta = \frac{AB}{BC}$

 $\tan \Theta = \underline{h}$...(i)

$$\tan (90^\circ - \Theta) = \frac{AB}{BD}$$
$$\cot \Theta = \frac{h}{9} \qquad \dots (ii) \qquad [\because \tan (90^\circ - \Theta) = \cot \Theta]$$

By multiplying both equations (i) and (ii),

tan $\Theta \cot \Theta = \frac{h^2}{144}$ $1 = \frac{h^2}{144}$ [: tan $\Theta \cot \Theta = 1$] $h = \sqrt{144} = 12 m$ Hence, option D is correct. 8. The Question Bank

Given, PQ = 10 m

Let, the height of the tower AB = h metre

And, BP = x metre

In ΔPBQ,

 $\tan 30^\circ = \frac{PQ}{PB}$

16

$$\frac{1}{\sqrt{3}} = \frac{10}{x}$$

$$x = 10\sqrt{3} \text{ m}$$
Now, in $\triangle ABP$,

$$\tan 60^{\circ} = \frac{AB}{PB}$$

$$\sqrt{3} = \frac{h}{x}$$

$$h = x\sqrt{3} = 10\sqrt{3} \times \sqrt{3} = 30 \text{ m}$$
Hence, option B is correct.

Given, distance BC = 20 m

Let, the height of the tower AB = h metre

In ∆ABC,

 $\tan 30^\circ = \frac{AB}{BC}$ $\frac{1}{\sqrt{3}} = \frac{h}{20}$ $h = \frac{20}{20}$

Hence, option D is correct.

10.

Given, distance between of the ladder and the house BC = 6.5 m

The Question Bank

Let, the length of the ladder = x metre

In the right-angled ΔABC,

 $\cos 60^\circ = \frac{6.5}{x}$

 $\frac{1}{2} = \frac{6.5}{x}$

x = 13 metres

Hence, option B is correct.

