Presents

TestZone

India's least priced Test Series platform

12 Month Plan

2019-20 All Test Series
@ Just

₹ 499/-

300+ Full Length Tests

$$
\begin{aligned}
& \boxtimes \text { Brilliant Test Analysis } \\
& \boxtimes \text { Excellent Content } \\
& \boxed{\text { Unmatched Explanations }} \\
& \text { JOIN NOW }
\end{aligned}
$$

Height and Distance Questions for CGL Tier 2, CGL Tier 1 and SSC 10+2 Exams

HEIGHT \& DISTANCE QUIZ 4

Directions: Study the following questions carefully and choose the right answer:

1. The angle of elevation of the top of a tower from the point P and Q at distance of ' a ' and ' b ' respectively from the base of the tower and in the same straight line with it are complementary. The height of the tower is
A. $\sqrt{a b}$
B. $\frac{a}{b}$
C. $a b$
D. $a^{2} b^{2}$
2. The angle of elevation of a tower from a distance 100 m from its foot is 30°. Height of the tower is :
A. $\frac{100}{\sqrt{3}} \mathrm{~m}$
B. $\frac{150}{\sqrt{3}} \mathrm{~m}$
C. $\frac{200}{\sqrt{3}} \mathrm{~m}$
D. $100 \sqrt{3} \mathrm{~m}$
3. A tower standing on a horizontal plane subtends a certain angle at a point 160 m apart from the foot of the tower. On advancing 100 m towards it, the tower is found to subtend an angle twice as before. The height of the tower is
A. 80 m
B. 100 m
C. 160 m
D. 200 m
4. The angle of elevation of a tower from a distance 50 m from its foot is 30°. The height of the tower is
A. $50 \sqrt{3} \mathrm{~m}$
B. $\frac{50}{\sqrt{3}} \mathrm{~m}$
C. $75 \sqrt{3} \mathrm{~m}$
D. $\frac{75}{\sqrt{3}} \mathrm{~m}$
5. The length of the shadow of a vertical tower on level ground increases by 10 metres when the altitude of the sun changes from 45° to 30°. Then the height of the tower is
A. $5 \sqrt{3} \mathrm{~m}$
B. $10(\sqrt{3}+1) \mathrm{m}$
C. $5(\sqrt{3}+1) \mathrm{m}$
D. $10 \sqrt{3} \mathrm{~m}$
6. The elevation of the top of a tower from a point on the ground is 45°. On traelling 60 m from the point towards the tower, the elevation of the top becomes 60°. The height of the tower (in metres) is
A. 30
B. $30(3-\sqrt{3})$
C. $30(3+\sqrt{3})$
D. $30 \sqrt{3}$
7. From two points on the ground lying on a straight line through the foot of a pillar, the two angles of elevation of the top of the pillar are complementary to each other. If the distance of the two points from the foot of the pillar are 9 metres and 16 metres and the two points lie on the same side of the pillar, then the height of the pillar is
A. 5 m
B. 10 m
C. 7 m
D. 12 m
8. The angle of elevation of the top of a vertical tower situated perpendicularly on a plane is observed as 60° from a point P on the same plane. From another point $Q, 10$ m vertically above the point P, the angle of depression of the foot of the tower is 30°. The height of the tower is
A. 15 m
B. 30 m
C. 20 m
D. 25 m
9. From a point 20 m away from the foot of a tower, the angle of elevation of the top of the tower is 30°. The height of the tower is
A. $10 \sqrt{3} \mathrm{~m}$
B. $20 \sqrt{3} m$
$C \cdot \frac{10}{\sqrt{3}} m$
D. $20 \sqrt{3} \mathrm{~m}$
10. The angle of elevation of a ladder leaning against a house is 60° and the foot of the ladder is 6.5 metres from the house. The length of the ladder is
A. $\frac{13}{\sqrt{3}} m$
B. 13 m
C. 15 m
D. 3.25 m

Correct answers:

1	2	3	4	5	6	7	8	9	10
A	A	A	B	A	C	D	B	D	B

Explanations:

1.

Let, the height of the tower $=\mathrm{h}$ metre
Given, $\mathrm{BP}=\mathrm{a}$ metre and $\mathrm{BQ}=\mathrm{b}$ metre
And, $\angle A P B$ and $\angle A Q B$ are complementary.
$\therefore \angle A Q B=\Theta$ and $\angle A P B=\left(90^{\circ}-\Theta\right)$
In $\triangle A B Q$,
$\tan \theta=\frac{A B}{B Q}$
$\tan \Theta=\frac{h}{b}$

Now, in $\triangle A B P$,
$\tan \left(90^{\circ}-\Theta\right)=\frac{A B}{B P}$
$\cot \Theta=\frac{h}{a}$
$\left[\because \tan \left(90^{\circ}-\Theta\right)=\cot \Theta\right]$

By multiplying both equations (i) and (ii)
$\tan \theta \cot \theta=\frac{h}{b} \times \frac{h}{a}$
$1=\frac{\mathrm{h}^{2}}{\mathrm{ab}} \quad[\because \tan \Theta \cot \Theta=1]$
$h=\sqrt{a b}$

Hence, option A is correct.
2.

Given, distance $B C=100 \mathrm{~m}$

Let, the height of the tower $=\mathrm{h}$ metre
In $\triangle A B C$,
$\tan 30^{\circ}=\frac{A B}{B C}$
$\frac{1}{\sqrt{3}}=\frac{h}{100}$
$h=\frac{100}{\sqrt{3}} m$
Hence, option A is correct.
3.

Given, $B C=160 \mathrm{~m}$ and $C D=100 \mathrm{~m}$
$\therefore B D=B C-C D=160-100=60 \mathrm{~m}$

Let, the height of the tower, $A B=h$ metre
And, $\angle A C B=\Theta$ and $\angle A D B=2 \Theta$
In $\triangle A B C$,
$\tan \Theta=\frac{A B}{B C}=\frac{h}{100}$

Now, in $\triangle A B D$,
$\tan 2 \theta=\frac{A B}{B D}$
$\frac{2 \tan \Theta}{1-\tan ^{2} \Theta}=\frac{h}{60}$
$\left[\because \tan 2 \theta=\frac{2 \tan \Theta}{1-\tan ^{2} \Theta}\right]$
$120 \tan \Theta=h\left(1-\tan ^{2} \Theta\right)$
$120 \times \frac{h}{160}=h\left[1-\left(\frac{h}{160}\right)^{2}\right]$
[From eq. (i)]
$\frac{3}{4}=1-\left(\frac{h}{160}\right)^{2}$
$\left(\frac{h}{160}\right)^{2}=1-\frac{3}{4}=\frac{1}{4}$
$\frac{h}{160}=\quad \frac{1}{4}=\frac{1}{2}$
$\mathrm{h}=80 \mathrm{~m}$

Hence, option A is correct.
4.

Given, distance $\mathrm{BC}=50 \mathrm{~m}$
Let, the height of the tower $A B=h$ metre
In $\triangle A B C$,
$\tan 30^{\circ}=\frac{A B}{B C}$
$\frac{1}{\sqrt{3}}=\frac{h}{50}$
$h=\frac{50}{\sqrt{3}} m$
Hence, option B is correct.
5.

Let, the height of the pillar, $A B=h$ metre.

When the sun's angle of elevation was 45°, then the length of shadow of the pillar is BD $=x$ (let).

And, when the sun's angle of elevation is 30°, then the length of shadow of the pillar is $B C$.

When the sun changes from 45° to 30°, then the length of shadow of the pillar increases $C D=10$ (given)
$\therefore B C=C D+B D=(10+x) m$

In $\triangle A B D$,
$\tan 45^{\circ}=\frac{A B}{B D} \Rightarrow 1=\frac{h}{x}$
$\Rightarrow \mathrm{h}=\mathrm{x} . .$. (i)

Now, in $\triangle A B C$,
$\tan 30^{\circ}=\frac{A B}{B C} \Rightarrow \frac{1}{3}$
$=\frac{h}{x+10}$
$\Rightarrow h 3-x=10$
$\Rightarrow \mathrm{h} 3-\mathrm{h}=10$
[From eq. (i)]
$\Rightarrow h(3-1)=10$
$\Rightarrow h=\frac{10}{\sqrt{3}-1} \times \frac{3+1}{\sqrt{3}+1}$
$=5(\sqrt{3}+1) m$
Hence, option A is correct.
6.

Let, the height of the tower, $A B=h$ metre
And, $B D=x$ metre

Given, $C D=60 \mathrm{~m}$
$\therefore B C=C D+B D=(60+x) m$
In $\triangle A B C$,
$\tan 45^{\circ}=\frac{A B}{B C} \Rightarrow 1=\frac{h}{60+x}$
$\Rightarrow x=h-60$
Now, in $\triangle A B D$,
$\tan 60^{\circ}=\frac{A B}{B D} \Rightarrow \sqrt{3}=\frac{h}{x}$

$$
\begin{aligned}
& \Rightarrow \mathrm{h}=\mathrm{x} \sqrt{3} \\
& \Rightarrow \mathrm{~h}=(\mathrm{h}-60) 3 \quad \text { [From eq. (i)] } \\
& \Rightarrow \mathrm{h}=\mathrm{h} \sqrt{3}-60 \sqrt{3} \\
& \Rightarrow h(\sqrt{3}-1)=60 \sqrt{3} \\
& \Rightarrow \mathrm{~h}=\frac{60 \sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =30 \sqrt{3}(\sqrt{3}+1)=30(3+\sqrt{3}) m
\end{aligned}
$$

Hence, option C is correct.
7.

Given, distance $B D=9 \mathrm{~m}$ and $\mathrm{BC}=16 \mathrm{~m}$
Let, the height of the pillar = h metre
$\angle A C B$ and $\angle A D B$ are complementary.
$\therefore \angle A C B=\Theta$ and $\angle A D B=\left(90^{\circ}-\Theta\right)$
In $\triangle A B C$,
$\tan \Theta=\frac{A B}{B C}$
$\tan \Theta=\underline{\mathrm{h}}$

Now, in $\triangle A B D$,
$\tan \left(90^{\circ}-\Theta\right)=\frac{A B}{B D}$
$\cot \Theta=\frac{\mathrm{h}}{9} \quad \ldots$ (ii) $\quad\left[\because \tan \left(90^{\circ}-\Theta\right)=\cot \Theta\right]$

By multiplying both equations (i) and (ii),
$\tan \theta \cot \theta=\frac{h^{2}}{144}$
$1=\frac{h^{2}}{144} \quad[\because \tan \Theta \cot \Theta=1]$
$h=\sqrt{144}=12 m$
Hence, option D is correct.
8.

Given, $\mathrm{PQ}=10 \mathrm{~m}$
Let, the height of the tower $A B=h$ metre
And, $B P=x$ metre

In $\triangle P B Q$,
$\tan 30^{\circ}=\frac{\mathrm{PQ}}{\mathrm{PB}}$
$\frac{1}{\sqrt{3}}=\frac{10}{x}$
$x=10 \sqrt{3} m$

Now, in $\triangle A B P$,
$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{PB}}$
$\sqrt{3}=\frac{h}{x}$
$h=x \sqrt{3}=10 \sqrt{3} \times \sqrt{3}=30 \mathrm{~m}$
Hence, option B is correct.

Given, distance $B C=20 \mathrm{~m}$
Let, the height of the tower $A B=h$ metre

In $\triangle A B C$,
$\tan 30^{\circ}=\frac{A B}{B C}$
$\frac{1}{\sqrt{3}}=\frac{h}{20}$
$h=\underline{20} m$

Hence, option D is correct.
10.

Given, distance between of the ladder and the house $B C=6.5 \mathrm{~m}$ Let, the length of the ladder $=x$ metre

In the right-angled $\triangle A B C$,
$\cos 60^{\circ}=\frac{6.5}{x}$
$\frac{1}{2}=\frac{6.5}{x}$
$x=13$ metres

Hence, option B is correct.

$-\dot{-1}$ - SmartKeeda

tug mis

TestZone

भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2019-20 All Test Series
@ Just

₹ $499 /-$

300 + फुल लेन्थ टेस्ट

```
- श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\(\checkmark\) बेजोड़ व्याख्या
```

