Presents

TestZone

4

India's least priced Test Series platform

12 Month Plan

2018-19 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\checkmark Excellent Content
\checkmark Unmatched Explanations

Data Interpretation Exercise for IBPS PO Pre, IBPS Clerk, SBI PO Pre and SBI Clerk Exams

DI TABLE CHART NO. 81

Direction: Study the following information carefully and the answer the questions.

Ram bought five cars in a day and put on rent for 15 days. The table represents the mileage of the cars, average amount of petrol used by each car per day, and the total time taken to cover the total distance which is covered during 15 days. (The time when the car was standing is not taken as consideration)

	Mileage of car	Average amount of petrol used per day	Total time taken to cover the total distance which is covered during15 days
Car A	$22 \mathrm{~km} / \mathrm{litres}$	8 litres	48 hours
Car B	$15 \mathrm{~km} /$ litres	12 litres	50 hours
Car C	$25 \mathrm{~km} /$ litres	9 liters	45 hours
Car D	$18 \mathrm{~km} /$ litres	20 litres	75 hours
Car E	$24 \mathrm{~km} /$ litres	16 litres	90 hours

1. What was the ratio of the average speed of Car A and Car C during 15 days?
A. $11: 13$
B. $11: 15$
C. $13: 11$
D. $15: 11$
E. None of these
2. Car A and Car E is travelling towards each other with speed same as the average speed of it during the given 15 days. After meeting, they travel to each other's starting point. If initially distance between both cars is $\mathbf{2 3 8 0} \mathbf{~ k m}$ then find difference of the time taken by car A and car B to reach their destination after meeting each other.
A. $(1089 / 176)$ hours
B. $(971 / 176)$ hours
C. $(1071 / 176)$ hours
D. $(1061 / 176)$ hours
E. None of these
3. Find the ratio of the time taken by Car D to travel 1080 km to the time taken by car B to travel 972 km , with the speed same as the average speed of it during the given 15 days.
A. $4: 5$
B. $5: 6$
C. $6: 11$
D. $7: 8$
E. $9: 10$
4. If the total distances covered by all the cars in 15 days is covered by car G and car H in 159 hours and 265 hours respectively then find the difference between average speeds of car G and Car H.
A. $40 \mathrm{~km} / \mathrm{h}$
B. $55 \mathrm{~km} / \mathrm{h}$
C. $45 \mathrm{~km} / \mathrm{h}$
D. $50 \mathrm{~km} / \mathrm{h}$
E. $60 \mathrm{~km} / \mathrm{h}$
5. Car C is travelling from point P to point Q and car D is travelling from point Q to point P. After every hour car C increases its speed by 6 km/h and car D decreases its speed by 3 km / h. If distance between point P and point Q is meet 765 km , then find the time taken by car C to reach point Q after meeting car D if after meeting both the cars travel at their initial speed. (The initial speed to be considered for Car C and Car D is the average speed during 15 days)
A. 5.2 hours
B. 4.6 hours
C. 4.4 hours
D. 5 hours
E. 4.8 hours

Correct answers:

1	2	3	4	5
B	C	B	D	C

Explanations:

1.

	Total distance covered in $\mathbf{1 5}$ days	Average Speed during 15 days
Car A	$22 \times 8 \times 15=2640 \mathrm{~km}$	$2640 / 48=55 \mathrm{~km} / \mathrm{h}$
Car B	$15 \times 12 \times 15=2700 \mathrm{~km}$	$2700 / 50=54 \mathrm{~km} / \mathrm{h}$
Car C	$25 \times 9 \times 15=3375 \mathrm{~km}$	$3375 / 45=75 \mathrm{~km} / \mathrm{h}$
Car D	$18 \times 20 \times 15=5400 \mathrm{~km}$	$5400 / 75=72 \mathrm{~km} / \mathrm{h}$
Car E	$24 \times 16 \times 15=5760 \mathrm{~km}$	$5760 / 90=64 \mathrm{~km} / \mathrm{h}$

Required ratio $=55: 75=11: 15$
Hence, option B is correct.
2.

	Total distance covered in $\mathbf{1 5}$ days	Average Speed during 15 days
Car A	$22 \times 8 \times 15=2640 \mathrm{~km}$	$2640 / 48=55 \mathrm{~km} / \mathrm{h}$
Car B	$15 \times 12 \times 15=2700 \mathrm{~km}$	$2700 / 50=54 \mathrm{~km} / \mathrm{h}$
Car C	$25 \times 9 \times 15=3375 \mathrm{~km}$	$3375 / 45=75 \mathrm{~km} / \mathrm{h}$
Car D	$18 \times 20 \times 15=5400 \mathrm{~km}$	$5400 / 75=72 \mathrm{~km} / \mathrm{h}$
Car E	$24 \times 16 \times 15=5760 \mathrm{~km}$	$5760 / 90=64 \mathrm{~km} / \mathrm{h}$

Relative speed $=55+64=119 \mathrm{~km} / \mathrm{h}$
Time taken to meet each other $=2380 / 119=20$ hours
Time taken by car A to travel its destination after meeting
$=(2380 / 55)-20$
$=(476 / 11)-20$
$=256 / 11$ hours
Time taken by car E to travel its destination after meeting
$=(2380 / 64)-20$
$=(595 / 16)-20$
$=275 / 16$ hours
Required difference $=(256 / 11)-(275 / 16)=(1071 / 176)$ hours
Hence, option C is correct.
3.

	Total distance covered in $\mathbf{1 5}$ days	Average Speed during 15 days
Car A	$22 \times 8 \times 15=2640 \mathrm{~km}$	$2640 / 48=55 \mathrm{~km} / \mathrm{h}$
Car B	$15 \times 12 \times 15=2700 \mathrm{~km}$	$2700 / 50=54 \mathrm{~km} / \mathrm{h}$
Car C	$25 \times 9 \times 15=3375 \mathrm{~km}$	$3375 / 45=75 \mathrm{~km} / \mathrm{h}$
Car D	$18 \times 20 \times 15=5400 \mathrm{~km}$	$5400 / 75=72 \mathrm{~km} / \mathrm{h}$
Car E	$24 \times 16 \times 15=5760 \mathrm{~km}$	$5760 / 90=64 \mathrm{~km} / \mathrm{h}$

Time taken by car B = 972/54 = 18 hours
Time taken by car $\mathrm{D}=1080 / 72=15$ hours
Required ratio $=15: 18=5: 6$
Hence, option B is correct.
4.

	Total distance covered in $\mathbf{1 5}$ days	Average Speed during 15 days
Car A	$22 \times 8 \times 15=2640 \mathrm{~km}$	$2640 / 48=55 \mathrm{~km} / \mathrm{h}$
Car B	$15 \times 12 \times 15=2700 \mathrm{~km}$	$2700 / 50=54 \mathrm{~km} / \mathrm{h}$
Car C	$25 \times 9 \times 15=3375 \mathrm{~km}$	$3375 / 45=75 \mathrm{~km} / \mathrm{h}$
Car D	$18 \times 20 \times 15=5400 \mathrm{~km}$	$5400 / 75=72 \mathrm{~km} / \mathrm{h}$
Car E	$24 \times 16 \times 15=5760 \mathrm{~km}$	$5760 / 90=64 \mathrm{~km} / \mathrm{h}$

Total distance $=2640+2700+3375+5400+5760=19875 \mathrm{~km}$
Average speed of car G = 19875/159 $=125 \mathrm{~km} / \mathrm{h}$
Average speed of car $H=19875 / 265=75 \mathrm{~km} / \mathrm{h}$
Required difference $=125-75=50 \mathrm{~km} / \mathrm{h}$
Hence, option D is correct.
5.

	Total distance covered in $\mathbf{1 5}$ days	Average Speed during 15 days
Car A	$22 \times 8 \times 15=2640 \mathrm{~km}$	$2640 / 48=55 \mathrm{~km} / \mathrm{h}$
Car B	$15 \times 12 \times 15=2700 \mathrm{~km}$	$2700 / 50=54 \mathrm{~km} / \mathrm{h}$
Car C	$25 \times 9 \times 15=3375 \mathrm{~km}$	$3375 / 45=75 \mathrm{~km} / \mathrm{h}$
Car D	$18 \times 20 \times 15=5400 \mathrm{~km}$	$5400 / 75=72 \mathrm{~km} / \mathrm{h}$
Car E	$24 \times 16 \times 15=5760 \mathrm{~km}$	$5760 / 90=64 \mathrm{~km} / \mathrm{h}$

Let, meeting time $=$ ' n ' hours
Relative speed of Car C and Car D for $1^{\text {st }}$ hour $=(75+72) \mathrm{km} / \mathrm{hr}=147 \mathrm{~km} / \mathrm{hr}$
As after every hour car C increases its speed by $6 \mathrm{~km} / \mathrm{h}$ and car D decreases its speed by $3 \mathrm{~km} / \mathrm{h}$.

So after every hour their relative speed increases by $(6-3) \mathrm{km} / \mathrm{hr}=3 \mathrm{~km} / \mathrm{hr}$ So the speed after $1^{\text {st }}$ hour will be $150,153,156$ and so on.

Total distance between point P and point $\mathrm{Q}=765$
$\Rightarrow(\mathrm{n} / 2)[2 \times 147+3(\mathrm{n}-1)]=765$
$\Rightarrow(\mathrm{n} / 2)[294+3 \mathrm{n}-3]=765$
$\Rightarrow \mathrm{n}=5$

So after 5 hours Car C and Car D meet each other.
In 5 hours Car C covered a distance of $(75+81+87+93+99) \mathrm{km}=435 \mathrm{~km}$ [As the speed increases every hour by $6 \mathrm{~km} / \mathrm{hr}$]

Car C has to cover total distance of $(765-435)=330 \mathrm{~km}$ after meeting car D.

Therefore, required time $=330 / 75=4.4$ hours[It is divided by 75 because after meeting it travels at its initial speed]

Hence, option C is correct.

- '- Smarkeeda

प्रस्तुत करते हैं

TestZone
भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2018-19 All Test Series

@ Just

₹ 399/-

300 + फुल लेन्थ टेस्ट
\square श्रेष्ठ विश्लेषण
\square उत्कृष्ट विषय सामग्री
『 बेजोड़ व्याख्या अभी जुड़ें

