-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Compound Interest Questions Quiz for CDS, CLAT, SSC and Bank Clerk Pre Exams.

Compound Interest Quiz 7

Directions: Kindly study the following Questions carefully and choose the right answer:

1. Rs. 6100 was partly invested in Scheme A at 10% pa compound interest (compounded annually) for 2 years and partly in Scheme B at 10\% pa simple interest for 4 years. Both the schemes earn equal interests. How much was invested in Scheme A?
A. Rs. 3750
B. Rs. 4500
C. Rs. 4000
D. Rs. 3250
E. Rs. 5000
2. A sum of Rs. 198 deposited at Cl doubles itself after 4 years. After $\mathbf{2 0}$ years it will become
A. Rs. 6336
B. Rs. 5894
C. Rs. 9250
D. Rs. 7932
E. None of these
3. Lata had Rs. 40000. She invested some amount in scheme A at Cl at 15% and the remaining amount in scheme B at SI at 10%. If she got the same interest from both the investments at the end of one year. How much in Rs. did she invest in scheme B ?
A. Rs. 34000
B. Rs. 24000
C. Rs. 16000
D. Rs. 18000
E. Rs. 20000
4. An amount of Rs. 110000 is invested at compound interest payable annually. If the rate of interest is 11% pa, what will be the total interest after two years?
A. Rs. 23481
B. Rs. 25531
C. Rs. 24200
D. Rs. 26416
E. None of these
5. Find the compound interest on Rs. 12000 for 2 years, the rate of interest being 3% per annum.
A. Rs. 840.8
B. Rs. 935.7
C. Rs. 1035.6
D. Rs. 730.8
E. Rs. 473.5
6. A man invests equal sums at the rate of 10% per annum compound interest and simple interest respectively for 2 years. After 2 years, the difference between the compound interest and the simple interest is Rs. 1000. Then the sum is
A. Rs. 100500
B. Rs. 110000
C. Rs. 120000
D. Rs. 100000
E. Rs. 900000
7. An amount is given at an interest of 8% pa. What is the amount if the difference of compound and simple interest for 2 years is Rs. 352 ?
A. Rs. 55000
B. Rs. 50000
C. Rs. 45000
D. Rs. 40000
E. Rs. 35000
8. The difference between the simple interest and the compound interest compounded annually at the same rate of interest on a sum of money at the end of two years is Rs. 162. What is definitely the rate per cent per annum?
A. 4
B. 7.5
C. 10
D. Data inadequate
E. 5
9. What is the difference between the compound interest and the simple interest accrued on an amount of Rs. 16,200 at the end of three years @ 25\%? (Rounded off to two digits after decimal)
A. 3213.44
B. 3302.42
C. 3495.28
D. 3290.63
E. None of these
10. The simple interest accrued on a certain principal at a rate of 9% p.c.p.a. in 5 years is Rs. 14,400 . What would be the compound interest accrued on the same principle in 2 years at the rate of 4 p.c.p.a. ?
A. Rs. 2614.60
B. Rs. 2641.60
C. Rs. 2611.20
D. Rs. 2624.20
E. None of these

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
C	A	B	B	D	D	A	D	D	C

Explanations:

1. Let the amount invested in Scheme A is Rs. x.

Then, the amount invested in Scheme B be Rs. (6100-x)
Now, according to the question,
$x\left(1+\frac{10}{100}\right)^{2}-x=\frac{(6100-x) \times 10 \times 4}{100}$
$\Rightarrow x\left(\frac{121}{100}-1\right)=\frac{(6100-x) \times 40}{100}$
$\Rightarrow \frac{21 \mathrm{x}}{100}=\frac{(6100-\mathrm{x}) \times 40}{100}$
$\Rightarrow 21 x=6100 \times 40-40 x$
$\Rightarrow 61 x=6100 \times 40$
$\Rightarrow \mathrm{x}=\frac{6100 \times 40}{61}=$ Rs. 4000
\therefore The amount invested in Scheme A is 04000.
Hence, option C is correct.
2.
$P\left(1+\frac{R}{100}\right)^{4}=2 P$
$\Rightarrow\left(1+\frac{\mathrm{R}}{100}\right)^{4}=2$
After 20 years,
$\left(1+\frac{R}{100}\right)^{20}=\left[\left(1+\frac{R}{100}\right)^{4}\right]^{5}=2^{5}=32$
Thus, the amount becomes 32 times.
So, amount $=198 \times 32=$ Rs. 6336
Hence, option A is correct.
3. Let the amount invested in Scheme A is Rs. x.

Then, the amount invested in Scheme B therefore will be Rs. (40000 - x)
We know that for the 1st year both Simple Interest and Compound Interest on a sum remains the same. Now, according to the question,
$\Rightarrow 15 \%$ of $x=10 \%$ of ($40000-x$)
$\Rightarrow 15 \mathrm{x}=400000-10 \mathrm{x}$
$\Rightarrow 25 x=400000$
$\Rightarrow x=16000$
\therefore Amount invested in scheme B $=40000-16000=24000$.
Hence, option B is correct.

4. Method I:

$P=$ Rs. 110000; $R=11 \% ; n=2$ years
$C I=P\left(1+\frac{R}{100}\right)^{n}-P$
$\mathrm{Cl}=110000\left(1+\frac{11}{100}\right)^{2}-110000$
$=110000\left(\frac{111}{100}\right)^{2}-110000$
$=135531-110000=$ Rs. 25531

Method II:

To solve this question, we can apply the net\% effect formula
Net\% effect $=\left(x+y+\frac{x y}{100}\right) \%$
Here, $x=y=11 \% \quad$ (because rate of interest is same for both the years)
By the net\% effect, we get effective rate of interest
$=\left(11+11+\frac{11 \times 11}{100}\right) \%=23.21 \%$
Therefore, 23.21% of $110000=$ Rs. 25531
Hence, option B is correct.
5. Method I : $\mathrm{P}=$ Rs. $12000 ; \mathrm{R}=3 \% ; \mathrm{n}=2$ years
$\mathrm{Cl}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}-\mathrm{P}$
$\mathrm{Cl}=12000\left(1+\frac{3}{100}\right)^{2}-12000$
$=12000 \times \frac{103}{100} \times \frac{103}{100}-12000$
$=12730.8-12000=$ Rs. 730.8

Method II:

To solve this question, we can apply the net\% effect formula
Net\% effect $=\left(x+y+\frac{x y}{100}\right) \%$

Here, $x=y=3 \% \quad$ (because rate of interest is same for both the years)
By the net\% effect, we get effective rate of interest
$=\left(3+3+\frac{3 \times 3}{100}\right) \%=6.09 \%$

Therefore, 6.09% of $110000=$ Rs. 730.8
Hence, option D is correct.

6. Method I:

To solve this question, we can apply a short trick approach
Sum $=\frac{\text { Difference } \times 100^{2}}{R^{2}}$
Given, Difference $=$ Rs. 1000, $R=10 \%$
By the short trick approach, we get
Sum $=\frac{1000 \times 100^{2}}{10^{2}}=$ Rs. 100000

Method II:

Let the sum be Rs. P.
According to the question,
$\left[P\left(1+\frac{10}{100}\right)^{2}-P\right]-\frac{P \times 2 \times 10}{100}=1000$
$\Rightarrow\left[P \times \frac{11}{10} \times \frac{11}{10}-P\right]-\frac{P}{5}=1000$
$\Rightarrow \frac{21 \mathrm{P}}{100}-\frac{\mathrm{P}}{5}=1000$
$\Rightarrow \frac{P}{100}=1000$
$\Rightarrow P=$ Rs. 100000
Hence, option D is correct.

7. Method I:

To solve this question, we can apply a short trick approach
Amount $=\frac{\text { Difference } \times 100^{2}}{\mathrm{R}^{2}}$
Given, Difference = Rs. 352, R = 8\%
By the short trick approach, we get
Amount $=\frac{352 \times 100^{2}}{8^{2}}=$ Rs. 55000

Method II:

We can solve it by the net\% formula,
Rate $\%$ of SI for 2 yr at $8 \% \mathrm{pa}=8 \times 2=16 \%$
Rate \% of CI for 2 yr at 8%,
$=8+8+\frac{8 \times 8}{100}=16.64 \%$
\% rate difference of Cl and $\mathrm{SI}=16.64 \%-16 \%=0.64 \%$
Let the amount be Rs. x, then
0.64% of $x=352$
$x=\frac{352 \times 100}{0.64}=$ Rs. 55000

Hence, option A is correct.
8. To solve this question, we can apply a short trick approach

Sum $=\frac{\text { Difference } \times 100^{2}}{R^{2}}$
Given, Difference = Rs. 162
By the short trick approach, we get
Sum $=\frac{162 \times 100^{2}}{R^{2}}$
$\Rightarrow R^{2}=\frac{162 \times 100^{2}}{\text { Sum }}$

The sum is not given.
\therefore We can't find rate of interest.
Hence, option D is correct.

9. Method I:

When difference between Cl and SI on a certain sum of money for 3 years, we can apply a short trick approach
Difference $=\frac{\text { Sum } \times R^{2}(300+R)}{100^{3}}$
$=\frac{16200 \times(25)^{2} \times(300+25)}{1000000}$
$=\frac{16200 \times 625 \times 325}{1000000}=3290.625 \approx 3290.63$

Method II: SI for 3 years at the rate of $25 \%=25 \times 3=75 \%$
Cl for 3 years at the rate of 25%, applying the net\% effect for first 2 years
$=25+25+\frac{25 \times 25}{100}=56.25 \%$
For next year $=56.25+25+\frac{56.25 \times 25}{100}=95.3125 \%$
Here we can see that in 3 years the given compound interest rate of interest is 95.3125%.
Difference between Cl and SI for 3 years $=(95.3125-75) \%=20.3125 \%$
Now, 20.3125% of $16200=\frac{20.3125 \times 16200}{100}=3290.625 \approx 3290.63$
Hence, option D is correct.

10. Method I:

SI for 5 years at the rate of $9 \%=5 \times 9=45 \%$
Cl for 2 years at the rate of 4%, applying the net\% effect
$=4+4+\frac{4 \times 4}{100}=8.16 \%$
45\% ミRs. 14400
So, 8.16% ミRs. x
By cross multiplication, we get
$x=\frac{14400 \times 8.16}{45}=$ Rs. 2611.20
Method II: Clearly, Rate $=9 \%$, Time $=5$ years, SI = Rs. 14400
So, Principal $=\frac{S I \times 100}{R \times T}=\frac{14400 \times 100}{9 \times 5}=$ Rs. 32000
Now, $\mathrm{Cl}=32000\left(1+\frac{4}{100}\right)^{2}-32000$
$=32000 \times \frac{26}{25} \times \frac{26}{25}-32000$
$=34611.20-32000=$ Rs. 2611.20
Hence, option C is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़
 ■ (3)

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-
 300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\checkmark बेजोड़ व्याख्या

