-' $^{-}$SmartKeeda The Question Bank
 Presents

 TestZone

 TestZone
 India's least priced Test Series platform

∇

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Circle Questions for CDS, SSC \& Railways Exams

Circle Quiz 5

Directions: Kindly study the following questions carefully and choose the right answer:

1. In $\triangle A B C, \angle A B C=70^{\circ}, \angle B C A=40^{\circ}$. O is the point of intersection of the perpendicular bisectors of the sides, and then the angle $\angle B O C$ is
A. 100°
B. 120°
C. 130°
D. 140°
2. A, B, C are three points on the circumference of a circle and if $A B=A C=5 \mathrm{~V} 2$ cm and $\angle B A C=90^{\circ}$, find the radius.
A. 10 cm
B. 5 cm
C. 20 cm
D. 15 cm
3. In the given figure, $\angle O N Y=50^{\circ}$ and $\angle O M Y=15^{\circ}$. Then the value of the $\angle M O N$ is
A. 30°
B. 40°
C. 20°
D. 70°
4. Two chords of lengths a metre and b metre subtend angles 60° and 90° at the centre of the circle respectively. Which of the following is true ?
A. $b=\sqrt{ } 2 a$
B. $a=\sqrt{ } 2 b$
C. $a=2 b$
D. $b=2 a$
5. Two circles touch externally at $P, Q R$ is a common tangent of the circles touching the circles at Q and R. Then measure of $\angle Q P R$ is
A. 60°
B. 30°
C. 90°
D. 45°
6. Two circles intersect each other at the points A and B, A straight line parallel to $A B$ intersects the circles at C, D, E and F. If $C D=4.5 \mathrm{~cm}$, then the measure of $E F$ is
A. 1.50 cm
B. 2.25 cm
C. 4.50 cm
D. 9.00 cm
7. Two circles C1 and C2 touch each other internally at P. Two lines PCA and PDB meet the circles $C 1$ in C, D and $C 2$ in A, B respectively. If $\angle B D C=120^{\circ}$, then the value of $\angle A B P$ is equal to
A. 60°
B. 80°
C. 100°
D. 120°
8. Two circles having radii r units intersect each other in such a way that each of them passes through the centre of the other. Then the length of their common chord is
A. V 2 r units
B. $\sqrt{3 r}$ units
C. V 5 r units
D. r units
9. Chords $A B$ and $C D$ of a circle intersects externally at P. If $A B=18 \mathrm{~cm}, C D=9$ cm , and $P D=15 \mathrm{~cm}$ then the length of $P B$ is
A. 22.07
B. 22.37
C. 21.07
D. 22.27
10. Length of two chords $A B$ and $A C$ of a circle are 12 cm and 5 cm and $\angle B A C=$ 90°. Find the radius of the circle.
A. 14
B. 13
C. 16
D. 23

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	B	D	A	C	C	A	B	A	B

Explanations:

1.

$O A=O B=O C=$ Circum-radius In $\triangle A B C$, we know that
$\angle A B C+\angle B C A+\angle B A C=180^{\circ}$
$\angle B A C=180^{\circ}-70^{\circ}-40^{\circ}=70^{\circ}$

Note : The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.
$\therefore \angle B O C=2 \times \angle B A C=2 \times 70^{\circ}=140^{\circ}$
Hence, option D is correct.
2.
$A B=A C=5 \sqrt{2} \mathrm{~cm}, \angle B A C=90^{\circ}$
Note: The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.
\therefore Exterior $\angle B O C=2 \times \angle B A C=2 \times 90^{\circ}=180^{\circ}$

$\therefore \angle B O C=360^{\circ}-$ Exterior $\angle B O C=360^{\circ}-180^{\circ}=180^{\circ}$
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{rcm}$ (radii)
$A B=A C$
$\therefore \angle \mathrm{AOB}=\angle \mathrm{AOC}=90^{\circ}$
In $\triangle \mathrm{AOB}$, By pythagoras theorem
$A B^{2}=O A^{2}+O B^{2}$
$(5 \mathrm{~V} 2)^{2}=r^{2}+r^{2}$
$50=2 r^{2}$
$r^{2}=25$
$r=5 \mathrm{~cm}$
Hence, option B is correct.
3.
$\angle O N Y=50^{\circ}$ and $\angle O M Y=15^{\circ}$
In $\triangle \mathrm{ONY}$,
$\mathrm{ON}=\mathrm{OY}$ (radii)
$\angle O Y N=\angle O N Y=50^{\circ}$

$\therefore \angle N O Y=180^{\circ}-\angle O N Y-\angle O Y N=180^{\circ}-50^{\circ}-50^{\circ}=80^{\circ}$
In $\triangle O M Y$,
$\mathrm{OM}=\mathrm{OY}$ (radii)
$\angle O Y M=\angle O M Y=15^{\circ}$
$\therefore \angle M O Y=180^{\circ}-\angle O M Y-\angle O Y M=180^{\circ}-15^{\circ}-15^{\circ}=150^{\circ}$
$\therefore \angle \mathrm{MON}=\angle \mathrm{MOY}-\angle \mathrm{NOY}=150^{\circ}-80^{\circ}=70^{\circ}$
Hence, option D is correct.
4.
$O A=O B=O C=O D=r$ units (radii)
$A B=a$ metre and $C D=b$ metre
$\angle A O B=60^{\circ}$ and $\angle C O D=90^{\circ}$
In \triangle COD, By pythagoras theorem

$C D^{2}=O C^{2}+O D^{2}$
$b^{2}=r^{2}+r^{2}=2 r^{2}$
In $\triangle A O B$,
$O A=O B$
$\therefore \angle A B O=\angle O A B$
$\angle A O B+\angle A B O+\angle O A B=180^{\circ}$
$60^{\circ}+\angle O A B+\angle O A B=180^{\circ}$
$2 \angle O A B=180^{\circ}-60^{\circ}=120^{\circ}$
$\angle O A B=60^{\circ}=\angle A B O$
$\therefore \triangle \mathrm{AOB}$ is an equilateral triangle.
$O A=O B=A B \quad \Rightarrow \quad a=r$
From equation (i),
$b=\sqrt{ } 2 r$
$b=\sqrt{2} a$
Hence, option A is correct.
5.
$\angle \mathrm{POQ}=\angle \mathrm{POR}=90^{\circ}$
$O Q=O P=O R$

[\because Tangent drawn from the same external point]
$\therefore \angle O Q P=\angle O P Q=\angle O R P=\angle O P R$

In $\triangle P O Q$, we know that
$\angle \mathrm{POQ}+\angle \mathrm{OQP}+\angle \mathrm{OPQ}=180^{\circ}$
$90^{\circ}+\angle \mathrm{OPQ}+\angle \mathrm{OPQ}=180^{\circ}$
$2 \angle \mathrm{OPQ}=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle O P Q=45^{\circ}$

Similarly in $\triangle P O R$, we get
$\angle O R P=45^{\circ}$
$\therefore \angle \mathrm{QPR}=\angle \mathrm{OPQ}+\angle \mathrm{ORP}=45^{\circ}+45^{\circ}=90^{\circ}$

Hence, option C is correct.
6.

Clearly,
$C D=E F=4.5 \mathrm{~cm}$
Hence, option C is correct.

7.
$\angle B D C=120^{\circ}$
$\therefore \angle C D P=180^{\circ}-\angle B D C=180^{\circ}-120^{\circ}=60^{\circ}$
$C D|\mid A B$
$\therefore \angle \mathrm{ABP}=\angle \mathrm{CDP}=60^{\circ}$

Hence, option A is correct.
8.
$C D=A C=r$ units
$\therefore \mathrm{CO}=\mathrm{OD}=\frac{r}{2}$ units
In $\triangle A O C$,

$\mathrm{OA}=\sqrt{A C^{2}-O C^{2}}=\sqrt{\mathrm{r}^{2}-\frac{\mathrm{r}^{2}}{4}}=\sqrt{\frac{3 \mathrm{r}^{2}}{4}}=\frac{\sqrt{3 \mathrm{r}}}{2}$
$\therefore A B=2 \times O A=2 \times \frac{\sqrt{3 r}}{2}=\sqrt{3 r}$ units
Hence, option B is correct.
9.
$P A \times P B=P C \times P D$
$\mathrm{PA}=\mathrm{PB}-18$
$P C=P D-C D=15-9=6 \mathrm{~cm}$
So, (PB-18)(PB) $=6 \times 15$
$P B^{2}-18 \mathrm{~PB}=6 \times 15$
$P B^{2}-18 P B-90=0$
$\mathrm{PB}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{18 \pm \sqrt{324-4 \times 1 \times 40}}{2}$
$=\frac{18 \pm \sqrt{324-326}}{2}$

$$
\begin{aligned}
& =\frac{18 \pm 2 \sqrt{171}}{2} \\
& =9+\sqrt{171}=9+13.07=22.07
\end{aligned}
$$

Hence, option A correct.
10.
$A s, B C$ is the diameter of circle, by using Pythagoras theorem

$$
\begin{aligned}
B C & =\sqrt{C A^{2}+A B^{2}} \\
& =\sqrt{12^{2}+5^{2}} \\
& =\sqrt{144+25} \\
& =\sqrt{169} \\
& =13
\end{aligned}
$$

Hence, option B is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

