-' $^{-}$SmartKeeda The Question Bank
 Presents

 TestZone

 TestZone
 India's least priced Test Series platform

∇

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Circles Questions for CDS, SSC \& Railways Exams

Circle Quiz 4

Directions: Kindly study the following questions carefully and choose the right answer:

1. Two circles touch each other externally. The distance between their centre is 7 cm . If the radius of one circle is 4 cm , then the radius of the other circle is
A. 3.5 cm
B. 3 cm
C. 4 cm
D. 2 cm
2. A, B and C are the three points on a circle such that the angles subtended by the chords $A B$ and $A C$ at the centre 0 are 90° and 110° respectively. $\angle B A C$ is equal to
A. 70°
B. 80°
C. 90°
D. 100°
3. N is the foot of the perpendicular from a point P of a circle with radius 7 cm , on a diameter $A B$ of the circle. If the length of the chord PB is 12 cm , the distance of the point N from the point B is
A. 65 cm
B. 122 cm
C. 35 cm
D. 102 cm
4. A, B, C, D are four points on a circle. $A C$ and $B D$ intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}, \angle B A C$ is
A. 120°
B. 90°
C. 100°
D. 110°
5. If two concentric circles are of radii 5 cm and 3 cm , then the length of the chord of the larger circle which touches the smaller circle is
A. 6 cm
B. 7 cm
C. 10 cm
D. 8 cm
6. A chord 12 cm long is drawn in a circle of diameter 20 cm . The distance of the chord from the centre is
A. 8 cm
B. 6 cm
C. 10 cm
D. 16 cm
7. If the chord of a circle is equal to the radius of the circle, then the angle subtended by the chord at a point on the minor arc is
A. 150°
B. 60°
C. 120°
D. 30°
8. The angle subtended by a chord at its centre is 60°, then the ratio between chord and radius is
A. $1: 2$
B. $1: 1$
C. V2: 1
D. $2: 1$
9. Each of the circles of equal radii with centres A and B pass through the centre of one another circle they cut at C and D then $\angle D B C$ is equal to
A. 60°
B. 100°
C. 120°
D. 140°
10. ' O ' is the centre of the circle, $A B$ is a chord of the circle, $O M \perp A B$. If $A B=20$ $\mathrm{cm}, \mathrm{OM}=2 \perp \mathrm{~V} 11 \mathrm{~cm}$, then radius of the circle is
A. 15 cm
B. 12 cm
C. 10 cm
D. 11 cm

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	B	D	D	D	A	B	B	C	B

Explanations:

1.

$O O^{\prime}=7 \mathrm{~cm}$
$r_{1}+r_{2}=7$
$4+r_{2}=7$

$r_{2}=7-4=3 \mathrm{~cm}$
Hence, option B is correct.
2.

We know that,
$\angle B O A+\angle A O C+\angle B O C=360^{\circ}$
$90^{\circ}+110^{\circ}+\angle B O C=360^{\circ}$
$\angle B O C=360^{\circ}-200^{\circ}=160^{\circ}$

Note: The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.
$\therefore \angle \mathrm{BAC}=\frac{1}{2} \angle \mathrm{BOC}=\frac{1}{2} \times 160^{\circ}=80^{\circ}$
Hence, option B is correct.
3.

Radius $=7 \mathrm{~cm}$
Diameter, $A B=14 \mathrm{~cm}$
$P B=12 \mathrm{~cm}$

$\angle A P B=90^{\circ} \quad[\because$ angle in the semi circle $]$
In $\triangle A P B$, By pythagoras theorem
$A P=\sqrt{A B^{2}-P B^{2}}=\sqrt{14^{2}-12^{2}}=\sqrt{52}$
Let, $A N=x \mathrm{~cm} \Rightarrow N B=(14-x) \mathrm{cm}$
In $\triangle A P N$, By pythagoras theorem
PN2 $=$ AP2 - AN2 $=52-x 2$
Again, In \triangle PNB, By pythagoras theorem
PN2 $=$ PB2 - NB2 $=144-(14-x) 2$
From Equation (i) and (ii),
$52-x 2=144-196+28 x-x 2$
$28 x=104$
$x=\frac{26}{7}$
$\therefore N B=14-\frac{26}{7}=\frac{72}{7}=10 \frac{2}{7} \mathrm{~cm}$
Hence, option D is correct.
4.

We know that, Exterior angle is equal to the sum of two interior opposite angles.
$\therefore \angle B E C=\angle E D C+\angle E C D$
$130^{\circ}=\angle E D C+20^{\circ}$
$\angle E D C=110^{\circ}$

$\therefore \angle B A C=\angle E D C=110^{\circ}$
[\because Angles on the same arc]
Hence, option D is correct.
5.
$O C=3 \mathrm{~cm}$ and $O A=5 \mathrm{~cm}$
In $\triangle A O C$, By pythagoras theorem,
$\mathrm{AC}=\sqrt{O A^{2}-O C^{2}}=\sqrt{5^{2}-3^{2}}=4 \mathrm{~cm}$

$\therefore A B=2 \times A C=2 \times 4=8 \mathrm{~cm}$
Hence, option D is correct.
6.

Diameter, $\mathrm{AB}=20 \mathrm{~cm}$
\therefore Radius, $\mathrm{AO}=\mathrm{OC}=10 \mathrm{~cm}$
Chord, $\mathrm{CD}=12 \mathrm{~cm}$

$\therefore C E=E D=6 \mathrm{~cm}$
In $\triangle C O E$, By pythagoras theorem
$\mathrm{OE}=\sqrt{O C^{2}-C E^{2}}=\sqrt{10^{2}-6^{2}}=8 \mathrm{~cm}$
Hence, option A is correct.
7.

If the chord of a circle is equal to the radius,
$\therefore O A=O B=A B$
Now, $\triangle \mathrm{AOB}$ is an equilateral triangle.

Hence $\angle A O B=60^{\circ}$
Hence, option B is correct.
8.
$\angle A O B=60^{\circ}$
$O A=O B=r$ (radii)
$\therefore \angle A B O=\angle O A B$

In $\triangle A O B$,
$\angle A O B+\angle O A B+\angle A B O=180^{\circ}$
$60^{\circ}+2 \angle O A B=180^{\circ} \quad[\because \angle O A B=\angle A B O]$
$2 \angle O A B=180^{\circ}-60^{\circ}=120^{\circ}$
$\angle O A B=60^{\circ}=\angle A B O$
$\triangle \mathrm{AOB}$ is an equilateral triangle.
$\therefore \mathrm{OA}=\mathrm{OB}=\mathrm{AB}$
$\therefore A B: O A=r: r=1: 1$
Hence, option B is correct.
9.

In $\triangle A B D$,
$\mathrm{AD}=\mathrm{BD}=\mathrm{AB}=$ radius
$\therefore \triangle \mathrm{ABD}$ is an equilateral triangle
$\therefore \angle A B C=60^{\circ}$
In $\triangle A B C$
$\mathrm{AC}=\mathrm{BC}=\mathrm{AB}=$ radius
$\therefore \triangle A B C$ is an equilateral triangle
$\therefore \angle A B D=60^{\circ}$
$\therefore \angle D B C=\angle A B C+\angle A B D=60^{\circ}+60^{\circ}=120^{\circ}$

Hence, option C is correct.
10.
$A B=20 \mathrm{~cm}$
$\therefore \mathrm{AM}=\mathrm{MB}=10 \mathrm{~cm}$
$\mathrm{CM}=2 \sqrt{11} \mathrm{~cm}$

In $\triangle A O M$, By pythagoras theorem
\therefore Radius OA
$=\sqrt{\mathrm{OM}^{2}+\mathrm{AM}^{2}}=\sqrt{\left.(2 \sqrt{11}) 2+10^{2}\right)}=\sqrt{144}=12 \mathrm{~cm}$
Hence, option B is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

